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Unit-1

Lesson-I Vector Spaces

1.0 Structure

1.1 Introduction

1.2 Objectives

1.3 Vector spaces

1.3.1 Definition of vector space
1.3.2 Theorem

1.4 Examples

1.5 Let Us Sum Up

1.6 Lesson End Exercise

1.7 University Model Questions

1.8 Suggested Readings

(1.1) Introduction: As we are familiar with the notion of Rings and fields
where a non empty set carries two binary operations namely addition (4) and
multiplication (.). Similarly here in this lesson we are going to introduce a no-
tion of vector space. A vector space is a non empty set of vectors with two
operations (one is internal binary operation among the vectors and another is
external operation on elements of set of vectors and elements of field known
as scalar multiplication).

(1.2) Objectives: (i) students will get understanding of a set of vectors.

(i) through this lesson students will understand the relation between algebra
and geometry.

(1.3) Vector Spaces

(1.3.1) Definition: A non empty set V is said to be a vector space over a

field F' under a binary operation + and scalar multiplication A\ : F xV —V
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defined by N o, v) = aw if the following properties are satisfied:
I) (V,+) is an abelian group.

II) properties under scalar multiplication

(1) (a+pv=av+pv, Va, f €F andVv €V

(2) «
(3) a(fv) = (af)v, Va, B € F and Vv eV
(4) lv=wv, Vv €V.

It is generally denoted as V (F).

(1.3.2) Theorem: Let V(F) be a vector space over F'. Then
(i))0v=0,Vv € V (ii)a0=0,Va € F.

(ut+v)=au+av, ¥V u,v €V andVa €F

(iii) a(—v) = —av = (—a)v () a(lu —v) = au —av, ¥V o« € F and
Vu v € V.

(v) av =0 if and only if either a =0 orv = 0.

Proof:(i) Since 0 +0 =0 in F.

Therefore, (04 0)v =0v +0v, Vv € V = 0v=_0v+ 0v

= 0+ 0v =0v+0v=0=0v.

(ii) Since 0 +0=10 in V.

Therefore, «(0+0) =al0+ a0,V a € F = a0 =a0+ a0

= a0+ 0=a0+al = 0=al.

(111) Since o+ (—a) = 0= (a+ (—a))v=00=0

= o+ (—a)v =0= (—a)v = —(awv).

Similarly, a(—v) = —aw.

(iv) By the property of vector space, we have afu + (—v)] = au + a(—v) =
au — av (by (iii)).

(v) Suppose that av = 0 and o # 0. Then there exists o= € F. This implies
that o' (av) = a0 =0 (using property (i))



= (ala)vr=0=1lv=0=v=0.

Conversely if either a« =0 or v =_0. Then in any of cases av = 0.

(1.4) Examples

1. Let V.= R". Define operation + and scalar multiplication on V as
(1, Ty ooy Tn)+ (Y1, Y2u ooy Yn) = (T14Y1, - oy Tptyn) and a(xy, ..., x,) =
(zy, ..., ax,),V a € F and for all (z1,...,2,), (Y1,...,Yyn) € R" respec-
tively. Then V' is a vector space over R.

For n = 1,V = R, is a vector space over itself. For n = 2,V = R? =
{(z,y)|z, y € R} is a vector space over R under the usual addition and scalar
multiplication.

Properties under +

(Ay) Let x = (1, ..., x,) and y = (Y1, - -, Yn) be any two elements of R™.
Then x+y = (x14+y1, - .., Tn+yn) € R" because x;+y; € R, ¥ i. This implies
that V' is closed under +.

(As) Let x, y and z be any elements of V. Then x+ (y+2) = (x1, ..., T,) +
(Y1 + 215 oy Yn + 20)

:($1+(y1+21), 7xn+(yn+zn))
=((z14+y1) + 21, ooy (T +Yn) + 20)
= (@1 4y, oy Ty +Yn) + (21, 22, .-+, 20)

=(z+y) +=z
(As) There exists 0 = (0,...,0) € V such that x +0 = (xq1, ..., x,) +
0, ...,0)

=(r14+0,...,2,+0)

=(r1,...,xp) =2, Vo €V
(Ay) For each

r=(z1,...,2,) €V



there exists —x = (—xy1, ..., —x,) € V

such that x + (—x) = (x1 — 21, ..., T —2,) = (0, ..., 0) =0

(A) v +y = (@1, i) + (W1, Yn) = (@1 + Yooy T+ Ya) =
(Y1 + 21, ooy Yo + ) =y + 2.

Properties under scalar multiplication: Let «, 8 be scalars and x =
(X1, ..., xy) and y = (Y1, ..., Yn) be any two elements of R™.  Then
(S1) alz +vy) =alxy+y1, . o\ T+ Yn)

= (a(z1+w1), -, a(@n +yn))

= (ax1 +ayy, ..., ar, + ayy)

= (ax1+, ..., ax,) + (ayr, ..., ayy,)
=oar+ oy

= a(r+y) =ar+ay.
(52) (a+ Bz = (a+ B)(z1, ..., Tn)
= ((a+ Bz, ..., (a+ B)x,)

= (axy + Py, ..., oz, + Px,)
= (axy, ..., ax,) + (Bxy, ..., Bxy)
= ax + fx

= (a+ f)x = az + fz.
(93) (aB)z = (af)(@1, ..., Tn)
= ((@B)z1, ..., (af)rn)
= (a(Bx1), ..., a(Bzy,))
= a(fxy, ..., Bz,)
(Bz)

(67

= (af)x = a(fx)
(54) 1o = 1(zy, ..., @)

= (1, ..., xT,) = 1T.



2. Let V =R?* = {(z,y)|z, y € R}. Define addition and scalar multiplication
on Vo as (x1,y1) + (x2,y2) = (x1 + y1, 22 + y2) for all x1, x2, y1, Y2 € R and
a(zy, z3) = (ax1,0) Ya € R and V(xq,x2) € V is not a vector space.
It is easy to see that (V,+) is an abelian group. The property 1(x1, x2) =
(21, 0) # (21, x2) which shows that V' is not a vector space.
3. Let V.= {ag + asx + ... ayx"ag, a1, ...a, € F} be a set of polynomials
over a field F. Then V is a vector space over F' under the operation addi-
tion + and scalar multiplication defined as (ag + a1z + ... apx™) + (bo + bz +
cobp™) = (ag + bo) + (a1 + b))z + .. (A + by)x™ + ..o anz™, if m < n and
alag + a1z + ...+ apx™) = aag + a1 + . .. + aa,x" respectively.
4. Let V,, = {ag+asx+. ..a,x"ag, a1,...a, € F'} be a set of polynomials over
a field F with deg f(x) < n, for all f(z) € V,,. ThenV,, is a vector space.
Properties under +: (Ay). Let f(x), g(x) be any elements of V,,. Then
deg(f(x)) < n and deg(g(x)) < n. Now, We know that deg(f(z) + g(z)) <
max{deg(f(x)),deg(g(x))} < n. This implies that f(x)+ g(z € V.
Ay. Since deg0 = —o0, s00 € V such that f(z)+0 = 0+ f(z) = f(x), Vf(z) €
7%
Az. Let f(z) = ap + a1x + agz® + ..., g(x) = by + bix + bex® + ... and
h(x) = co+ c1x + cox® + ... be any elements of V,,. Then it is easy to see that
(f(@) + 9(@)) + h(z) = F(@) + (g(z) + h(z)) and f(z) + g(z) = g(z) + F(z).
Therefore, V,, is an abelian group.
Properties under scalar multiplication:
(S1) Let « € F and f(x) = ag+ a1z +asx® +...,g(x) = by +bix+ bz + ... in
V. Then a(f(x) +g(z)) = a((ap + a1z + agz* +...) + (bg + biz + baz® + . ..))
= afap + bo) + alay + b))z + ...
= (aag + aayz +...) + (aby + abjz + .. .)



= af(z) + ag(z)
(S3) Let a, B € F and f(z) = ap + a1x + agz* + ... € V,.
Then (a+ B)f(x) = (a+ B)ag + (v + Blarz + . ..
= (aay + Pag) + (cayz + Parx) + . ..
= (aay + aaz + ... + Bag + farx + .. .))
= af(x) + B f(x)
(S3) Let o, B € F and f(x) = ag+ a1z + agz® + ... € Vj,.
Then (af) f(x) = (af)ap + (af)arx + . ..
= a(fao) + a(far)z + ...
= a(Bf(x))
(S4) 1f () = f(x), Vf(x) € Va.
Therefore, V,, is a vector space over F.
5. Let V' be the abelian group of positive real numbers for multiplication. De-
fine scalar multiplication in V by ar = 2% a € R and x € V. ThenV is a
vector space over R.
Solution It is enough to verify the properties under scalar multiplication:
(1) Leta,be R and z € V,
then (a + b)x = xo+°
= x%2°
= (ax)(bx) = ax + bx (because here + in 'V means multiplication).
(2) Leta e R and z, y € V.
Then a(xy) = (zy)”
— goye
= (az)(ay)
(3) Leta, be R and x € V.
Then (ab)x = x%



= (%)
= (bx)*
= a(bx)

(4) Let 1 € R and x € V. Then 1z = ' = x.
6. Let F be a field and M,,x.,(F) be the set of all m x n matrices over F. Then
M,sn(F) is a vector space over F under the addition of matrices and multi-
plication of matrixz by a scalar as internal and external operations on My, xn(r)
respectively.
Solution:Let V- = M, «n(F).
Properties under +:
(A1) Let A = [a;j] and B = [b;;] be two matrices of order m x n over a field
F. Then A+ B = [a;;] + [bij] = [aij + bj].
This implies that A+ B € V.
(Ag) Let A = [ai;], B = [b;j] and C = [¢;j] be any elements of V.
Then (A+ B) 4+ C = [ai; + bij] + [cij]

= [(ai; + bij) + ;5]

= [aij + (bij + cij)]

= [aij] + [bij + cij]

=A+(B+0C).
(As) There ezists O = [0]xn € V, where 0 is an identity element of F' such
that A+ O = [a;; + 0] = [a;;] = A.
(A4) For each A € V there exists —A € V such that A+(—A) = [a;; —a;;] =
[0]msxn-
(As) Let A = [a;j] and B = [b;;] be any two elements of V. Then A+ B =
[aij] + [bis] = [ai; + bi] = [bij + ai;] = [bi] + [ai5] = B+ A.

Properties under scalar multiplication:
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(S1) Let « € F,p € Fand A € V. Then (a+ p)A = [(a + Ba;] =
aij + Pagg] = |aag] + [Pai] = alai] + Blai] = A + BA.
(S2) Let v € Fand A, B € V. Then a(A+ B) = a([a;] +[by]) = « [a;;+
bij] = [a(ai; + bij)] = [oai; + abj| = [aa,j] + [ab;] = aA+ aB.
(93) (aB)A = (aB)lay] = [(@B)ai;] = [a(Bay;)] = alfay] = a(Blay] = aBA).
(54) 1A = 1fay] = [lag] = [a;] = A.
7. Let V. = F¥% be the set of all functions from a non-empty set S to field
F. Then V is a vector space over F under operations + (sum of functions)
and scalar multiplication defined by (f + g)(s) = f(s) +g(s),V s € S and
(cf)(s) =cf(s),Vc € FandV s € S respectively.
Solution:
Properties under +:
(A1) Let f € V and g € V. Since f(s) +g(s) € F,
so (f+9)(s) = f(s)+g(s) € F which implies that f +g € V.
(As) Let f, g, h be any elements of V.
Then ((f +9) + h](s) = (f + 9)(s) + h(s) = [£(5) + 9(s)] + h(5)

= f(s) + [g(s) + h(s)]

= f(s)+ (g +h)(s)

= [f + (g+h)l(s)
= (f+g9)+h=F+(g+h)
(As) Define a function O : S — F by O(s) =0, Vs € S.
Then O € V and (f + O)(s) = f(s) + O(s) = f(s) +0 = f(s) which implies
that f+ O =f, ¥V f €V.
(Ag) For each f €V, define a function —f : S — F define by (—f)(s) =
—f(s),Vs € V.
Then (—f + f)(s) = —f(s) + f(s) =0 =O(s)
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=—-f+[=0.
(As) (f +9)(s) = f(s) +g(s) = g(s) + f(s) = (g + f)(s)
=f+g=9+/.
Properties under scalar multiplication:
(S1) Since cf(s) € F, Ve € FandV f € V.
Therefore cf € VVNc € FandV f € V.
(S2) Let ¢1, co € F and f € V. Then [(c1 + ¢2) f](s) = (c1 + ¢2) f(s)
=1 f(s) +caf(s)
= (cif + 2 f)(s)

= (a1 +e)f =(af+cf).
(S3) Let c€ F and f1, fo €V.
Then c(f1 + f2)(s) = c[fi(s) + fa(s)]

= cfi(s) + cfa(s)

= (cf1)(s) + (cf2)(s)

= lcfi + cfo](s)
= c(fi+ f2) =chi +cfo
(S4) [(c1e2) f](s) = (crca) f(s)
c1(c2f(s))
c1l(c2f)(s)]
ci(eaf)](s)
= (c160)f = c1(caf).
(S5) (Lf)(s) = 1f(s) = f(s) = 1f = [.

(1.6) Lesson End Excercise

1. If F is a field, verify that F™ is a vector space over the field F' under the

operations addition (+) and scalar multiplication defined as (z1, ..., x,) +
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Y1y «o s Un) = (@1 + Y1, ooy Tn + Yn) and afxy, ..., z,) = (Qxq, ..., axy)
respectively.
2. Let V be set of all real valued continuous functions defined in closed in-
terval [a, b]. Then show that V is a vector space over R with addition and
scalar multiplication defined by (f + g)(x) = f(x) +g(x),V f, g € V and
(af)(z)=af(x),Ya € R, f € V.
3. Let V set of all real valued continuous functions defined on [0, 1] such
that f(%) = 2. Show that V' is not a vector space over R under addition and
scalar multiplication defined as (f + g)(x) = f(x) +g(z),V f,g € V and
(af)(z)=af(x),Ya € R, f € V.
Hint: let f € V and g € V. Then f(3) = 2 and g(3) = 2. But
f+9)3) =fE)+9(3) =2+2=4#2 SoV is not closed under ad-
dition (+).
4. Show that the set V. ={f : R — R | 3275 + 3% =0 } is a vector space over
R under the operations as defined in ezxercise 3.
5. Let V be a wector space over the field of numbers R and W =
{(u, v) : u,v € V}. Define addition in W co-ordinate wise and scalar mul-
tiplication in W by (a + tb)(u, v) = (au — bv, av +bu), a, b € R, 1= +/—1.
Show that W s a vector space over C.
Solution: Properties under addition
(A1) Let (v1,v9) € V and (ur, u2) € V. Then (v, ve) + (ug, ug) =
(v1 4+ uy, vo +ug) € V. Therefore V is closed under addition.
(Ag) Let v = (v1, v9) € V, w = (wy, wy) € V and u = (uy, uz) € V.
Then (v +w) +u = (v; + wy, Vg + wa) + (uy, u2)

= ((v1 + wy) + uy, (va + wa) + ug)

= (v1 + (w1 + ug), v + (w2 + uy))
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= (v1, v2) + (w1 + ua), (w2 + ug))
=v+ (w+u)
= (v4+w)+u=v+ (w+u).
(A3) There exists (0, 0) € V' such that (vy, v2) + (0, 0) = (v1 + 0, vo + 0) =
(v1, v2), ¥V (v1, v2) € V.
(Ay) For each v = (vy, vq), there exists —v = (—vy, —vq) such that v+ (—v) =
(v1 — v, V2 — vg) = (0, 0).
(As5) Let (v1,v2) € V and (ui, ug) € V. Then (v1, v2) + (u1, ug) =
(v1 + w1, Vo +ug) = (ug + vy, ug + v2) = (ug, ug) + (v1, vV2).
This shows that (W, +) is an abelian group under addition.
Properties under Scalar multiplication: Let z;, zo be any two elements
of Candv,u € V. Then
(S1) (21 + 22)v = (a1 + tby + ag + thy)(vy, v2)
= ((a1 + az) + ¢(by + b2))(v1, vo)
= ((a1 + ag)vy — (by + b2)ve, (a1 + ag)ve + (by + by)vy)
= (a1v1 — b1va, a1V + byvy) + (agvy — bava, asvs + bovy)
= (a1 + th)(v1, v2) + (ag + tby)(v1, v2)
= z1(v1, v2) + 22(v1, Vo)
= 21V + 29V
= (21 + 22)V = 210 + 290.
(S2) (a4 b)(v+u) = (a+ b)((v1, v2) + (u1, ug))
= (a+ tb)(v1 + uy, v2 + uy)
= (a(v1 + u1) — b(vy + ug), a(ve + uz) + b(vy + uy))
= (avy — bvy, ave + bvy) + (au; — bug, aus + buy)
= (a + tb)(v1, v2) + (@ + tb)(u1, usg)
= (a+ b)v + (a + tb)u
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(53) (2122)u = ((a1 + tb1)(az + tha)) (w1, u2)

= ((a1a2 = b1by) + t(bras + boar)) (w1, u2)
= ((ayag — biby)uy — (byag + boay )us, (aras — biby)us + (byag + boay )uy)
= (aq1(aguy — baug) — by (bouy + agus), aq(agsus + bouy) + by(aguy — baus))
= (a1 + tby)(aguy — bausg, bouy + asus)

= z1(22(u1, u2))

= z1(20u).
(Sy) 1u = (14 :0)(uy, ug) = (uy, uz) = u.

a b
6. Show that the set of all matrices of the form where a, b € C is a
—b a

vector space over C under matriz addition and scalar multiplication.

7. Show that C is a vector space over field C.

8. Show that every field F' is a vector space over itself.

Hint: Since every field F' is an abelian group under addition and scalar mul-
tiplication is the multiplication of elements of F'. Therefore all properties of
vector space are satisfied in F.

9. Show that R is not a vector space over C.

Hint: Since R s not closed under scalar multiplication because 13 = 3 does

not belong to R.

(1.7 University Model Questions)

L. If (R, +, .) be the field of real numbers, then show that R is a vector space
over R.

2. Define a vector space over a field. Let V = {x € R|lx > 0}. Forz, y € V,
letx ®y =2y and fora € R and x € V, let a ©® x = x“. Prove that'V is a

vector space over R under the above operations.
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3. Define vector space over a field F. For (xy, x3) and (yi, y2) € R?, let
(1, 2) + (y1, Y2) = (1 + Y1, T2 + y2) and a(xy, y1) = (ax1, 0) fora € R. Is
R? is a vector space over R under the above operation?

(1.8) Suggested Readings:(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-11 Subspaces of vector space and quotient space

2.0 Structure

2.1 Introduction

2.2 Objectives

2.3 Subspace of vector space
2.3.1 Definition of subspace
2.3.2 —2.3.8 Theorems

2.4 FExamples

2.5 Let Us Sum Up

2.6 Lesson End Ezercise

2.7 Quotient Space

2.7.1 Definition of Quotient Space
2.8 University Model Questions

2.9 Suggested Readings

(2.1) Introduction: Given any algebraic structure such as group, ring or a
field, we have studied sub-algebraic and quotient structures such a subgroup, a
subring or a subfield and quotient group, qoutient ring. Similarly we shall now
define subspace of a vector space and quotient vector space.

(2.2) Objective: The aim of this lesson is to find new vector spaces, knowing
the given vector space.

(2.3) Subspace of vector space:

(2.3.1) Definition: A non-empty subset W of a vector space V(F') is said to
be a subspace of V if W is itself a vector space under the operations of addition
and scalar multiplication defined for V.

Note For any vector space V' over a field F, the set {0} and the set V', both

are subsets of V.. Also, both of these are vector spaces under the operations of
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addition and scalar multiplication of V. Hence, both {0} and V are subspaces
of V, known as trivial subspaces and the subspaces other than {0} and V
are called proper subspaces of V.

(2.3.2) Theorem: A non-empty subset W of a vector space V' is a sub-
space of V if and only if (i) x +y € W, ¥V z,y € V and (ii) ax €
WNYa € FandVx € W.

proof: Firstly, we suppose that W is a subspace of V.. Then W is itself a vector
space under the operations of V. This implies that (i) x +y e W, YV z,y €V
and (i) ax e WN o € F andVz € W.

Conversely, suppose that (i) v +y € W, ¥ z,y € V and (i) ax €
WN o € FandV x € W. We shall prove that W is a subspace of
V.

For this, =1 € F and x ¢ W = (-1)z € W (by (ii)) = —x € W. This
implies that every element of W has additive inverse.

Now by (i) we have¥V xz € W, —x € W = o+ (—z) e W =0¢e W, so that
additive identity exist in W.

Since W C V, therefore, vt +y=y+z,Vx,yec W

v+ y+z)=(@+y +z,Vr,y zeW

alr+y)=ar+ay,Va € Fix,yecW

(a+B)lx=ax+Px,Ya, eF,zeW

afzr) = (af)x,Va, BEF, x €W

lx=z,VzeW leF

= W is a subspace of V.

(2.3.3) Theorem: A non-empty subset W of a vector space V is a subspace
of Vif and only if (i) x —y € W, ¥ x,y € Vi.e, W is a subgroup of (V,+)
and (i) cx e W¥N o € FandVz € W.
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proof: Firstly, we suppose that W is a subspace of V.. Then W is itself a vector
space under the operations of V. This implies that (i) x —y € W, Y x,y €V
and (ii) ax e W¥N o € FandVx € W.

Conversely, suppose that (i) v —y € W, ¥ z,y € V and (i) ax €
WY a € FandV x € W. We shall prove that W is a subspace of
V.

For this, =1 € F and x € W = (=1)x € W (by (i1)) = —x € W. This
implies that every element of W has additive inverse.

For,e e WandyeW =z eWand —yeW =z —(—y)=x+y e W.
So, W s closed under +.

Now by (i) we haveV x € W, = z—x € W = 0 € W, so that additive identity
exist in W.

Since W C V, therefore, t+y=y+ax,Vr,yec W
r+y+z)=(@+y)+z, Vo, yzeW

alr+y)=ar+ay,Va € Fz,yecW

(a+pB)r=ax+px,Va, eEF,xeW

a(fz) = (af)z,Va, b€ F,x eW

lr=z,VzeW leF

= W s a subspace of V.

(2.3.4) Theorem: A non empty subset W of V is a subspace of V' if and
only if ax + Py € WV a, e Fandx,yecV.

Proof: First, we suppose that W is a subspace. Then W is itself a vector
space. This implies that ax+Py € WV a, B € F andx, y € V. Conversely,

We shall show that W is a subspace of V. For this, (i) put « =1 and = —1
in (1) wegetx —ye W, Va,y €W,
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Similarly, put 5 = 0 in (1) we get ax € V, forall « € F and ¥V x € V.
Therefore by the above theorem W 1is a subspace of V.

(2.3.5) Theorem: Let Wi and Wy be two subspaces of a vector space V.
Then W1 N Wy is also a subspace of V' but the W1 U Wy need not be a subspace
of V.

Proof. Since 0 € WiNWsy, so WiNWy # ¢. Letx, y € WiNnWy and o, 5 € F.
Then x, y € Wy and x, y € Wy

= ax + By € Wi and ax + By € Wy (because Wy, Wy are subspaces).

= azr+ fy e WiNW,

= Wi N Wy is a subspace of V.

Cosider V- = R? be a vector space over R. Let Wi = {(x1, 0)|z; € R} and
Wy = {(0, x2)|z2 € R} be two subsets of V. Then we shall prove that Wy and
Wy are subspaces of V- and W1 U Wy is not a subspace of V.

For this, let o, 8 € R and z, y € Wy. Then az + fy = alxy, 0) + B(y1, 0) =
(az1, 0) + (By1, 0) = (az1 + By, 0) € Wy

= az + [y.

Similarly, let a, B € R and x, y € Ws.

Then ax + By = (0, z1) + B(0, y1) = (0, axy + By1) € Wa

= ax + [y € Ws.

Now (1, 0) € Wy U Wy and (0, 1) € Wy U Wy but (1,0) + (0, 1) = (1, 1) ¢
Wi U Ws.

This shows that Wy U Wy is not a subspace of V.

(2.3.6) Theorem: Let Wy and Wy be two subspaces of a vector space V(F).
Then W1 U Wy is a subspace of V' if and only if either W, C Wy or Wy C Wi
Proof. First, let us suppose that either Wi C Wy or Wy C Wy. When
Wy C Wy, then W1UWy = Wy, which is a subspace of V. Similarly if Wy C Wh,
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then W1 U Wy = Wy which is a subspace of V. This implies that Wy U Wy s a
subspace of V.
Conversely, suppose that W1 UWs is a subspace of V. Then we shall show that
either W1 C Wy or Wy C Wh.
For this, suppose that Wy ¢ Wy and Wy ¢ Wy. Then there exists x € Wy but
x Wy andy e Wy buty ¢ Wy =z, y € Wy U Ws.
Since W1 U Wy is a subspace of V', therefore, x —y € W1 U Wy
= eitherx —y € Wy orxz —y € W,
When x —y € Wy, then x — (v —y) € Wy (because x € W)
= y € Wy, which is a contradiction to the fact that y ¢ Wy. Similarly, when
x—yeWy=y+ (x—y) € Wy (because y € W)
= x € Wy, which is a contradiction to the fact that x ¢ Wy. This implies that
our supposition 1s wrong.
Hence, either W1 C Wy or Wy C Wh.
(2.8.7) Theorem: Let Wy and Wy be two subspaces of a vector space V(F').
Then Wi + Wy = {z1 + y1|x1 € Wi, y1 € Wa} is also a subspace of V.
Proof. Since 0+0=01inV, so0e W)+ Wy = W, + W, # ¢.
Letu,ve Wi+ Wy and o, B € F. Then u=x1+ 1y, and v = x9 + Yo, where
1, o € Wi and yy, yo € Wh.
Now, au + v = a(z; +y1) + B(z2 + y2)

= (axy + Baz) + (ayr + By2) € Wi + W
= au + fv € Wy + Ws. This shows that Wy + Wy is a subspace of V.
(2.3.8) Theorem: Let V' be a vector space over a field F' and NpeaW,, is also
a subspace of V.
Proof. Since W, # ¢, for each a € A. Therefore, W = NpeaWy # ¢. Now,
letz e W andy € W.
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Then x, y € W, for each o € A. Since W, is a subspace for each o, we have
x—y €W, and ax € W, for each a € A.

This implies that v —y € W and ax € W. Hence W 1is a subspace of V.
Corollary Let S be any subset of a vector space V.. Then the intersection of
all subspaces of V' containing S is a subspace of V' containing S.

Proof Since S C W, for each oo € A. Therefore S C NpeaW, and by theorem
NacaWy is a subspace containing S.

(2.4) Examples

1. The intersection of any number of subspaces of a vector space V(F) is a
subspace of V.

Solution Let F = {W,|a € A} be any family of subspaces of V. Then

0e maEAWa = maEAWa 7é gb

Leta,be F and x, y € NeeaWs. Then x, y € W,, Va € A
=ar+by e W,,Va € A = ax + by € NpeaWa.
Hence NpeaW,, is a subspace of V.
2. Let V.= R" be a vector space over R. If W = {zx = (xy, ..., x,)| x1 = 0},
W is a subspace of V.
Solution: Since 0 = (0,0 ...,0) € W. So, W # ¢.
letz,y e W and o, B € F. Thenx = (1, ..., x,) andy = (y1, ..., Yn) Such
that 11 =0 =y1.......... (1).
Now ax + By = (axy, ..., ax,) + (By1, -, Byn)
= (axy + By, - .., ax, + Pyyn), using (1) we get
ax + By = (axy + By1, .., oz, + Byn)
= (0, axs + Bya, ..., ax, + Byyn).
This implies that ax + Py € W. Hence W 1is a subspace of V.
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3. Let V = F[z] be a vector space of polynomials in x over F' and W = F),|[x]
be the subset of all polynomials of degree less than or equal to n. Then W is a
subspace of V.

Solution: Since 0 € W as the deg0 = —oo. Therefore, W # ¢.

Now, let a, € F and f(z), g(x) € V. Then deg(f(z)) < n and deg(g(z)) <
n = deg(af(z) + fg(z)) <n

= af(x) + Bg(x) € W. Hence W is a subspace of V.

3. Let 'V be a vector space of real valued functions over R. Show that
W ={f(x) € Vldl, +adf +bf =0 where a, b are fived reals }.

Solution Since O(x) =0, VY x and d 29 + a9 + b0 =0

=0eW=W#¢. Leta, f €R andf(x),g(x)eW
:>ﬁ+a£—|—bf:0 andﬁ—f—a@ﬁng:O

Now (O‘Hﬁg) +a (O‘Hﬁg) +b(af+pBg) = ’ CVf—l—abdaf thaf+2L 5g+a‘wg~l—bﬁg

dz?

- "f;ij +ao‘df +abf + Sjg +a’3d9 + Bg

:a( +ad +bf)+,6(dx2 a% +bg) =0+0=0

= af(x) + Bg(x) € W. Hence W is a subspace of V.

4. Let V = {A|A = [aj]nxn, aij € R} be a vector space over R. Show that W,
the set consisting of all the symmetric matrices is a subspace of V.
Solution. Since O = [0]yxn € W = W # ¢. Let o, f € F and P, Q € W.
Then P = [p;j] and Q = [q;;] such that p;j = pj; and ¢;j = qj;.

Now aP+3Q = [apy]+[Bai;] = [apij +Bai;] = [apji+Basi] = [rij], wherery; =
apj; + Bqji = apji + B = i = [ri;] is a symmetric matriz. Therefore,
aP+ Qe W.

5. Let a, b, ¢ be fized elements of a field F. Show that W = {(z, y, z)|ax +
by +cz=0;x,y, 2 € F} is a subspace of 3.

Solution Since (0,0,0) € W asa0+00+c0=0,0¢€ F

23



= W #£ ¢.

Let o, € F and wy, wy € W. Then wy = (x1, y1, 21) and wy = (T3, Yo, 22)
such that axy + by, + czy = 0 and axy + bys + czo = 0.

Now aw; + fwy = a1, y1, 21) + B(x2, Yo, 22)

= (ax1 + Bxs, ays + Bya, az1 + f29) and

a(axy + Bra) + blays + By2) + claz; + Pzo) = alaxy + by + cz1) + Blaxs +
bys +cz9) =a0+50=04+0=10

= awi + fwy € W

= W is a subspace of V.

6. Let V = R3 be a vector space over R. Which of the following subsets of V
are subspaces?

(OW = {(z1, 22, x3)|z1 < 0}

(1))Wh = {(x1, xo, x3)|x3 is an integer }

(110)Wo = {(z1, 2, x3)|21, T2, x5 € Q}

(iv)W3 = {(x1, ®a, x3)|x1 > T2 > 23}

Solution (i) Let (x1, o, x3) € V. Then x1 < 0. Take o = —2. Then
a(xy, x9, x3) = (ax1, axy, axg) = (—2x1, —2x9, —213) ¢ W because —2x; >
0. This shows that W is not a subspace of V.

(i1) Let (xy, 29, x3) € Wi. Then x5 is an integer. Now for /2 €
R, \/ﬁ(xl, T9, 13) = (V211, V222, \/§x3) ¢ W as V25 is not an integer.
Therefore Wy is not a subspace of V.

(iii) Let (xq, xo, x3) € Wiy  Then w1, xo, 3 € Q. Now for m €
R, w(xy1, z9, x3) = (mx1, TT2, TX3), TT1, TX2, TT3 need not be rational num-
bers. Therefore, Wy is not a subspace of V.

(iv) Let (xy, o, x3) € W3. Then x1 > x9 > x3. Now for a = —1, we have

—1(x1, z9, x3) = (—x1, —2, —x3) & W3. Therefore, Wy is not a subspace of
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V.
(2.5) Let Us Sum Up: In this lesson we have defined subspace of a vector
space and discussed the critera for a non-empty subset of vector space to be

subspace. Then we have illustrated subspace with various ezamples.

(2.6) Lesson End Exercise

1. If Vi is a subspace of Vo and Vs is a subspace of V', show that Vi is a
subspace of V.

2. Which of the following spaces are subspaces of R™? Why?

(i) Wy = {x = (21, xa, ..., T,)|T1 > X2}.

(i) Wy = {x = (1, xa, ..., xp)|z1 + ®2 + ... + 2, = 0}.

(1)) Wy = {x = (21, Ta, ..., Tp)|x1 + X2+ ... + 2, = 1}.

(iv) Wy ={z = (21, 2, ..., x,)|x1 =0 and z, = 0}.

(iv) W5 ={x = (21, o, ..., xp)|x1 = 209 + 323 + ... + nx,}.

Answer (ii), (iv) and (v).

3. Let V = CI0, 1] be the space of continuous functions on [0, 1]. Which of
the following are subspaces of V7 and why?.

(i) W ={z|x € V, z(t) > 0}.

(it) Wi = {z|z € V, z(t?) = z(t)*}

(iii) Wy = {z|x € V, z(t) = z(—t)}

(iv) Wy = {z|x € V, z(t) is a polynomial of degree 3}.

Answer (iii) and (iv).

4. Show that R? is not a subspace of a vector space R®. Justify your answer.
5. Let W1 and Wy be two subspaces of V. Then show that Wi + Wy is the
smallest subspace of V' containing Wy U Wj.

(2.7) Quotient Space
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Exercise Let V' be a vector space over a field F' and W be its subspace. Then
show that the set of cosets of W in V., W' = {z + W|z € V} is a vector
space under the operation additions (+) and scalar multiplication defined as
(x4+W)+(y+W)=(z+y)+W,Va,yeV and a(z+ W) =ax+ W, Va €
F, x €V respectively.

Solution. Properties under addition +:

(i)+ is binary operation: Let x + W =2’ +W and y+ W =y + W. Then
z—2 eWandy—y e W = (z—2")+y—y)eW = (z+y)—(2'+y) e W
= (x+y)+ W= +y)+W

= (@+W)+y+W)= (' +W)+ (y +W). This shows that + is a binar
operation on W',

(ii) (x+WHy+W)+2+W =((z+y)+W)+@+W)=((z+y)+2)+ W
=@+ y+2))+W=ao4+WH+y+WH+24+W),Va,y 2z€V.

(111) There exists 0+ W € W' such that (x + W)+ (0+W) = (x+0)+ W =
c+W, Yae+WeW.

(iv) For each v + W € W' there exists —x + W € W' such that (x + W) +
(—24+W)=(@—2)+W=0+W,

() (x+W)+(y+W)=(x+y) +W
=y+x)+W=y+W)+(@+W),Va,yeV.

Properties under scalar multiplication:

Leta, b€ Fand x + W, y+ W € W'. Then

(i) (a+B)(z+ W)= (a+ Bz +W

=(ax+Px)+ W =(ax + W)+ (Br+ W) =ale+ W)+ Bz + W).

(i) alx+W +y+W)=a((z+y)+ W) =alz+y)+ W
=(arx+ay) + W = (az+ W)+ (ay+ W) =alz+ W)+ By +W).

(iii) (afB)(x + W) = (af)zr + W = a(fx + W) = a(B(x + W)).
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() Lz +W)=z+W.

Thus, W' is a vector space over F.

Definition (2.7.1) Let V' be a vector space over a field F' and W be its
subspace. Then the space of cosets of W in V' is called a quotient space un-
der the addition and scalar multiplication defined as (x + W) + (y + W) =
(x+y)+W,Va,yeV and a(z+W) =ax+W,Va € F, x € V respectively.
It is denoted by V/W .

(2.8) University Model Questions

1. Let U and W be subspaces of V' such that W C U, then prove that U/W is
subspace of V/W.
2. Giwen a subspace S of a vector space V' over F', show how to make the

additive subgroup V/S into a vector space over F.

3. Show that W = {(x1, xa, ..., xp)|x1 = 22+ 23+ ... + 2.} is a subspace of
R"™.
4. Show that W = {(z1, 2, ..., x,)|zr1 > 0} is not a subspace of R™.

(2.9) Suggested Readings:(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.
(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra, Prentice Hall India.
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Lesson-I11

Linear dependence and linear independence of set of vectors

3.0 Structure

3.1 Introduction

3.2 Objectives

3.3 Linear dependence and linear independence of vectors
3.3.1 — 3.3.3 Definitions

3.3.4 —3.3.6 Theorems

3.4 Ezamples

3.5 Let Us Sum Up

3.6 Lesson end exercise

3.7 Unwversity Model Questions

3.8 Suggested Readings

(3.1) Introduction: In this lesson we shall study the fundamental properties
of vectors or set of vectors i.e whether a set of vectors is linearly independent
or linearly dependent.

(3.2) Objective: The students will learn the geometric properties of vectors
by going through this lesson.

(3.3) Linear dependence and linear independence of vectors

(3.3.1) Definition: Let 1, x3, ..., z, be elements of a vector space V(F')
and ay, as, ..., a, € F. Then a1x1 + asxs + ...+ ayx, 15 called a linear com-
bination of x1, xa, ..., Tp.

(3.3.2) Definition: A subset S = {x1, xa, ..., x,} of a vector space V(F) is
said to be linearly dependent if there exists scalars oy, o, ..., o, not all zero
such that cyxy + asxs + ... + apx, = 0. The vectors xy1, xa, ..., T, are called

linearly dependent vectors.
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(3.3.3) Definition: A subset S = {x1, xa, ..., x,} of a vector space V (F)
1s said to be linearly independent if cnxqy + aoxs + ... + az, = 0, for a; €
FVi=a =a =... =a«, = 0. The vectors x1, x3, ..., x, are called
linearly independent vectors.

Remarks: (i) Any subset S C V which contains a linearly dependent set is
linearly dependent.

For this, let S = {xi1, ..., xx} be linearly dependent subset of S =
{z1, ..., Tk, Tp1, ..., Tn}. Then there exists scalars oy, ag, ..., o not all
zero such that ayxy + aoxe + ...+ apxr =0

= ar1 + @y + ...+ agrp + 0zgyq + ... + 02, = 0.

This shows that S is linearly dependent.

(i) Any subset S of V' which contains 0 is linearly dependent.

In this case we have a linear combination 1(0) + O0xy + O0xe + ... + Oz, =
0,Va, €8, i=1,2 ..., n= S5 is linearly dependent.

(i1i) Let 0 £ v € V. Then {v} is linearly independent.

For this, suppose that av = 0. Then either « = 0 or v = 0. Since v # 0, so
a = 0. Hence {v} is linearly independent.

(iv) Every subset of linearly independent set is linearly independent.

For this, Suppose contrary that any subset Sy of linearly independent set S
is not linearly independent. Then Sy is L.D. subset of S = by remark (i) S
s also linearly dependent, which is a contradiction. Hence every subset of a
linearly independent set is linearly independent.

(3.3.4) Theorem: Let V be a vector space over F. Then

(1) the set {xy, xa} is linearly dependent if and only if one is a scalar multiple
of other.

(17) the set {1, xa, w3} is linearly dependent if and only if one is a linear
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combination of other two.

Proof. (i) First, let’s suppose that {x1, xo} is linearly dependent.

Then there ezists scalars «, B (not both zero) such that axy + Py = 0.
Suppose that o # 0,

then there exists a™' € F such that o' (axy + fr3) =0

= atar; +a Bry) =0= 21+ afry = 0= 2, = —a ' Bwy. This proves
the direct part.

Conversely, suppose that v1 = kxy = 1 — kxg =0

= 1(x1) + (—k)zo = 0, which is a non-trivial linear relation.

This shows that {x1, xo} is linear dependent.

(ii) Suppose that the set {x1, xa, x3} is linearly dependent. Then there erists
scalars o, B, v (not all zero) such that axy + Pxy + yrs = 0.

Without loss of generality, suppose that o # 0. Then there exists a=! € F
such that o' (axy + Brg + yas) = 0

= o lar, +a By +a vz =0

=z +a 1Bry +ayzy =0

=1, = —a 1 Bry — oy,

This proves the direct part.

Conversely, suppose that one vector is a linear combination of other two, say
T = axo + fxs

= 11 —axy— Prg = 0, which is a non trivial linear relation among the vectors.
This implies that the set {xy1, xo, x3} is linearly dependent.

(3.3.5) Theorem: Let V be a vector space over F. Then a subset S =
{1, za, ..., x,} 1s linearly dependent if and only if some element of S is lin-
ear combination of others.

Proof. Suppose that the set S = {1, xa, ..., x,} is linearly dependent. Then
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there exists scalars ay, as, ..., a, € F (not all zero) such that ayx1 + asxs +
...+ a,x, =0.

Without loss of generality, assume that a, # 0.

Then there ezists a, ' € F such that

an a1y + asze + ...+ apxy,) =0

= a, tayry + an, tasxs + ...+ a, ta,r, =0

= a, tayry +a, tasxs + ...+ 2, =0

= T, = —an_lalxl — an_lagxg — = an_lan_lxn_l

= 2, = (—a, tay)zy + (—antag)ze + -+ (—an tan_1)Tn_1.

This shows that one vector is a linear combination of others.

Conversely, suppose that one wvector is a linear combination of others say
T1 = Qoo + a3x3 + -+ + ATy

= T — ATy — A3X3 — ... — ATy = 0

= 11+ (—a2)r2 + (—az)rs + ... + (—an)x, = 0, which is a non trivial linear
relation among the vectors. This implies that the set {xy1, xa, ..., x,} is lin-
early dependent.

(3.3.6) Theorem: Let V' be a vector space over F. Then a subset S =
{1, za, ..., ,} of non-zero vectors is linearly dependent if and only if some
vector x,,, 2 < m < n can be expressed as a linear combination of its preceed-
mg vectors.

Proof. Suppose that S = {x1, za, ..., x,} is linearly dependent. Then there
scalars ay, ag, ..., a, € F' (not all zero) such that a1xy + asxs + ... + apz, =
0....(1)

Let m be the largest suffix of a for which a,, # 0.

Then equation (1) can be written as a;xq+asTo+. . .+ Ty +02, 1+ .. 0z, =

0
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= a1x1+asrs+ ...+ a2y, =0

. Ifm =1, then az,, = 0 = x,, = 0 which is contradiction to the fact that
all vectors of S are non zero.

Therefore, m > 1 or 2 < m < n. Now, there ewists a, ' € F such that
A a1y + asTo + ...+ apTy) =0

= (amtar)zr + (@ rag)zs + ...+ (am L am)Tm =0

= (amtay)z1 + (@ tag)we + ... + 1, =0

= Ty = (= tay) Ty + (=@ rag)ze + . oo 4 (=@ 1) Tt -

This shows that x,, is a linear combination of its preceeding vectors. Con-
versely, suppose that some wvector x,, can be written as linear combination
of its preceeding vectors. Then x,, = aijx; + asTo + ... + Up_1Tym_1, for
ay, @g, ..., Ay € F

= @121 + agy + ... + ap_1Tm-1 + (= 1)@y + 021 + ... + 0z, =0

= there exists scalars ay, as, ..., ayp = —1#0, a1 = ... = a, = 0 not all
zero such that ayxy + asws + ... + apx, = 0. Hence S s linearly dependent.
(3.4) Examples

1. If V =R3, then

S=1{(1,1,0), (0, =1, 1), (=1, 0, —=1)}

is linearly dependent because (1, 1, 0)+ (0, =1, 1)+ (—1,0, =1) =(1—1, 1 —
1,1-1)= (0,0, 0).
2. If V =R3, then

S ={(1,1,0), (0, =1, —1), (1, 0, —1)}

is linearly independent (L.I.).
Solution consider a(1, 1, 0) + b(0, —1, —1) + ¢(—1, 0, —1) = (0, 0, 0)
= (a—c,a—b, —b—c)=(0,0,0)
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=a—c=0,a—b=0and —b—c=0

1 0 -1 _a 0
=11 =1 0 []|b] =10
0 -1 -1} |¢ 0
1 0 -1
Now, |1 -1 0]|=2#0
0 —1 —1

= therefore the equations have only trivial solution i.e a = 0, b =0, ¢ = 0.
This shows that S is L.1I.
3. Prove that the set

S=1{(1,23), (1, -3,2), (2, -1, 5)}

is linearly dependent in V = R3.

Solution. Cosider a(1, 2, 3) + b(1, =3, 2) 4+ ¢(2, —1,5) = (0,0, 0) for
a, b, ce R

= (a4+b+2¢, 2a—3b—¢, 3a+2b+ 5¢) = (0, 0, 0)
=a+b+2c=0,2a—3b—c=0 and 3a+2b+5¢=0

these equations can be written in the matriz form as
1 1 2||a 0

2 =3 1| |b] =10
3 2 5 c 0
1 1 2

Now, |2 =3 —1|=1(-15+2)—1(10+3)+2(4+9) =0

3 2 5
= this system of equations have non-trivial solutions.

= We get the scalars a, b, ¢ € R not all zero such that a(1, 2, 3)+b(1, —3, 2)+
c(2, =1, 5) = (0, 0, 0).
Therefore, S is linearly dependent.
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4. If x s a linear combination of xi, xo, ..., x, then show that
1, Lo, ..., Tp, T are linearly dependent.

Solution. We have v = oy + oy + ... + Ty,

= o121 + @y + ... + apx, — lx = 0 which is a non trivial linear relation.
This shows that x1, xo, ..., x, are linearly dependent.

5. Let x, y, z be linearly independent vectors in a vector space V(F'). Then
x4y, y+ 2z, x+ 2 are also linearly independent.

Solution. Consider a(z +y)+ B8y +2) +v(x+2)=0

= (a+y)r+(a+B)y+(B+v)z2=0
=a+7y=0,8+7=0and a+ 3 =0.

Solving these equations, we get « + =0 and o« — =10

= we geta = 0,8 =0 andy=0. Hence x +y,y+ 2, x + 2 are linearly
independent.

6. Find the condition under which the vectors (b, 1, 0), (1, b, 1), (0, 1, b) are
linearly dependent in R3.

Solution. Let «, 3, v € R such that «(b, 1, 0) + 5(1, b, 1) + (0, 1, b) =0
= (ab+ B, a+ b8, B+by) = (0,0, 0)

=ab+ =0, a+b8=0 and 3+ by=0.
b 1 0] |« 0

=1 b 1| |B| =
01 bf |~

b 1 0

Now, |1 b 1|=0bb*—1)—b=0>—2b

01 b
The vectors (b, 1, 0), (1, b, 1), (0, 1, b) are linearly dependent in R? if the the

above system of equations (x) have non-trivial solutions.
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b 1 0

That is the system of equations (x) have non trivial solutions if |1 b 1| =10

01 b
= b3 — 2b = 0, which is the required condition.

(3.5) Let Us Sum Up : The main property of elements of vector space is
their linear dependence and linear independence which have been defined and
tllustrated with the help of examples in this lesson. With the help of theorems,

more properties of vectors have been explored.

(3.6) Lesson End Exercise

1. Determine whether the following subsets of vector space V = R3 are linearly
independent:

(i) S1={(1,0,1), (1, 1, 1), (0, 0, 1)}.

(i) So ={(2, -1, 3), (4, 1, —1), (2, 3, =3)}.

(i) S3 ={(1, 1, 2), (-3, 1, 0), (1, =1, 1), (1, 2, =3)}.

(iv) Sy = {(0, 1, —=2), (1, =1, 1), (1, 2, 1)}.

2. Find the condition under which zy = a + b, zo = ¢+ 1d are L.I. over C.

3. Let S ={(2, -1, 0), (1, 2, 1), (0, 2, —1)}. Show that S is linearly indepen-

dent. Ezpress (3, 2, 1) as a linear combination of elements of S.

1 1 k
4. Find k if the vectors |—1|, | 2 |, |0| are linearly dependent.
3 -2 1

5. Let V = Fy[x] be a vector space of polynomials of degree less than or equal to
4. Then show that the set of polynomials {14z, x+x*, 2*+23, 23 +z*, ' -1}
are L.D.
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(3.7) University Model Questions

1. Let V be the vector space of all twice differentaiable functions on [0, 1].
Find all x € V', such that x(t) and '(t) are linearly dependent.

Hint Since x(t) and 2'(t) are linearly dependent, so one can be written as
linear combination of other. Suppose that x'(t) = ax(t).

Then dzgt) = az(t) = % = adt.

Now, integrating on bothside, we get

logx = at + ¢, ¢ is constant of integration.

2. If x, y, z are linearly independent vectors of V', then show that x + vy, y +
z, x + z are also linearly independent.

(3.8) Suggested text books :(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-IV Linear span of vectors

4.0 Structure

4.1 Introduction

4.2 Objectives

4.3 Linear span

4.3.1 — 4.3.2 Definitions

4.3.3 —4.3.4 Theorems

4.4 Ezamples

4.5 Let Us Sum Up

4.6 Lesson End Ezercise

4.7  Unaversity Model Questions

4.8 Suggested Readings

(4.1) Introduction : In this lesson, we are introducing a notion of generating
set for a vector space and its properties. Basically the idea is to compute the
minimal generating set for a vector space and it turns out to be unique.
(4.2) Objective : The students will understand the nature of the smallest
vector space containg a non-empty set which turns out to be the linear span of
that non empty set.
(4.3) Linear span of vectors
(4.3.1) Definition Let S be a non-empty subset of a vector space V(F).
Then the set of all linear combinations of any finite number of elements of S
is called the linear span of S. It is denoted by L(S) or < S > so that

L(S) = {Z%IJ(% eEFandz; € 5,1<i< n} )

i=1
Note If S = ¢. Then L(S) = {0}.
(4.3.2) Definition A subset S of a vector space V(F') is said to be a gen-

erating set of the vector space V if L(S) =V.
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(4.3.3) Theorem Let S be a subset of a vector space V(F). Then L(S) is
the smallest subspace of V' containing S.
Proof. Since 0 = a0+ ...+ a,0 for each a; € F.
Therefore 0 € L(S) = L(S) # ¢.
Now let x, y € L(S) and o, B € F.
Then .

x = Z a;T;

i=1

and .

y=> by

i=1
for all a;, b; € F' and x;, y; € S.
Now, az + By = (3 7, aixi) + BT, bjy;)
=D i aaim + Y50 Bbyy;
= (aay)xy + ... + (aay)x, + (Bb)yr + ... + (Bbm)Ym
which is a linear combination of finitely many elements of S. This implies that
ax + By € L(S). Therefore L(S) is a subspace of V.
Now, suppose that W is any subspace of V' containing S. Thens € W,V s € S.
Since W is a subspace of V', so
iaisi eW,Va, €F, s;€8.
i=1

This implies that L(S) C W. Hence L(S) is the smallest subspace of V' con-
taining S.
Corollary. Let S = {x1, xa, ..., x,} be a finite set.
Then L(S) = {z| >, a;zila; € F and z; € S}.
(4.3.4) Theorem Let S and T be any subsets of a vector space V(F'). Then

prove that
(i) S C L(T) = L(S) C L(T)
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(ii)) S C T = L(S) C L(T)
(iii) S is a subspace of V < L(S) =S
(iv) L(L(S)) = L(S).
Proof. (i) Let x € L(S). Then z = . jax;, ¥ a; € F and z; € S Since
SCL(T)=xz;€ L(T),Vz; € S
= > v a;x; € L(T) as L(T) is a subspace of V
= L(S) C L(T).
(ii) Let x € L(S). Then x = >  ax;,V a; € F and z; € S. Since
SCT=z=%" ,aqx;,Va€Fandz;, €T
=z € L(T). Hence L(S) C L(T).
(i11) Let S be a subspace of V(F'). Then we have to prove that L(S) = S. Since
L(S) is the smallest subspace of V' containing S. Therefore S C L(S)...(1)
Now, let x € L(S). Then there exists x1, xa, ..., x, €S and ay, az, ..., ay €
F such that .

:U:Zaixi,Vai € Fandx; € S.

i=1
Since S is a subspace of V', sox € S.

L(S)cC S..(2)

Therefore, from (1) and (2), we have L(S) = S.

(iv) Since L(S) is a subspace of V', so by (iii) we have

(4.4) Examples
1. Let S and T be any subsets of a vector space V(F'). Then

L(SUT) = L(S) + L(T).
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Solution. Let x € L(SUT). Then
r = Zaixi,inESUTandaiGF;izl,Q...,n

i=1
= Zajxj —i—Zakxk s ;€S8 and €T
=z € L(S) + L(T)
= L(SUT) C L(S)+ L(T).....(7).
Conversely, suppose thaty € L(S) + L(T). Then
k m
y = Z%‘Z/H‘ Z bjy; YyieS y €T

i=1 j=k+1

m

— ZaiyiVyieSUT

i=1
=ye LSuT)
= L(S)+ L(T) C L(SUT)....(i1).
Hence, from (i) and (ii) we have L(SUT) = L(S) + L(T).
2. Let V =R3. Show that

(1,7, —4) € L((1, =3, 2), (2, -1, 1)).

Solution. Let (1,7, —4) = a(1, =3, 2) + B(2, —1, 1). Then
(1,7, —=4) = (o, =3, 20) + (26, =3, B)
= (a+28, =3a— 3, 2a + f3)
=1 = a+2p
7 = —3a-8
—4 = 20+8

Solving these equations, we get o = —3 and B = 2. Therefore (1,7, —4) =
-3(1, =3, 2) +2(2, -1, 1)
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= (1,7, —4) € L((1, =3, 2), (2, -1, 1)).

a
3. Find the conditions on a, b, ¢ such that s a linear combination of
—b ¢
1 1 1 1 1 -1
the matrices A = , B= and C' = .
0 —1 -1 0 0 O

a b
Solution. Let =aA+ B +~C.

—-b ¢
Then
a b 1 1 1 1 1 -1
= « + 7 + v
—-b ¢ 0 —1 -1 0 0 O
a b a o« B B v
= + +
-b ¢ 0 —« -8 0 0 O
a bl [a+B+y a+B—n
—-b ¢ —b —«
=a = a+f+7y
b = a+p—v
b = -8
c = —«
Solving these equations, we get « = —¢, f =b, vy = —c= —c+b—c=a =

a — b+ 2c =0, which is the required condition.
4. Find the value of k so that (1, —2, k) becomes a linear combination of

vectors (3, 0, —=2) and (2, —1, —5).
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Solution. Let (1, =2, k) = «(3, 0, —2) + 5(2, —1, —=5). Then

(1, =2, k) = «3,0, =2)+ 5(2, =1, =5)
(1, =2, k) = (3, 0, —2a) + (28, —f, —505)
(1, =2, k) = (Ba+28, -5, —2a —55)
=3a+28 =1
3 = -2
—20-58 = k

Solving these equations we get f =2, a = -1 =2+ (=5)2 =k =k = -8.

5. Does (1, =3, 5) belong  to  the  linear  span  of
S=1{(1,21),(1,1,1, 1), (4,5 —2)}?

Solution. Suppose that (1, =3, 5) € L(S). Then (1, =3,5) = a(1, 2, 1) +
b(1, 1, —1) + ¢(4, 5, —2)

=

(1, =3,5) = (a,2a, a)+ (b, b, —=b) + (4c, 5¢, —2¢)
(1, =3,5) = (a+b+4c,2a+b+5¢c,a—b—2c)
=a+b+4c = 1..(i)
2a+b+5c = —3....(i7)

a—b—2c = b...(ii)

Solving these equations (i), (ii) and (iii), we get a+ ¢ = 3.....(iv) and a + ¢ =
2....(v). From equations (iv) and (v) it is clear that we could not find a, b, ¢
such that (1, =3, 5) = a(1, 2, 1) +b(1, 1, —1) + ¢(4, 5, —2).

6. Let V = Rlx] be vector space of polynomials over R and S = {z* — 2x +
5, x+ 3, 22 — 3z}. Show that f(x) = 2% + 4x — 3 is an element of L(S).
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Solution Let f(z) = a(x? — 2z +5) + b(z + 3) + ¢(22* — 3z). Then

2?+4r -3 = a(z® — 22 +5)+b(z + 3) + c(22* — 32)
= (a+2c)2* + (=2a+b—3c)x + (5a + 3b)
Sa+2e = 1.(1)
2a+b—3c = 4.(2)

5a+3b = —3..(3)

Solving equations (1) and (2), we get —a+2b=11....(4) . From equations (3)
and (4), we getb=4=a=—3 and c = 2.

Therefore f(x) = —3(x? — 2z + 5) + 4(x + 3) + 2(22* — 3x).

7. Let V.= C be a vector space over R. Then show that S = {1, .} is a
generating set for V.

proof. Since L(S) C V......... (1).

Now let z € V.. Then z = a + b, for ,a, b€ R

=z=al+b=ze€ L(S5)...(2).

Therefore, from (1) and (2), we get

V= L(S).

This implies that S is a generating set for V.

8. Let S =1{(1,1,0), (0,2,0)}. Show that W = {(x1, x2, 0)|x1, 2 € R} is
the subspace of R® generated by S.

Solution. Let xz,y € W and a,b € F. Then ax + by = a(xy, x2, 0) +
b(y1, y2, 0) = (axy + by, axs + bys, 0) € W as axy + by, axs + bys € R.
Therefore, W is a subspace of V.

Now we shall show that W = L(S). For this, note that S C W

= L(S) Cc W.
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Let v € W. Then x = (x1, 2, 0).
Let v = (1, 1, 0) + 5(0, 2, 0), fora, B € F. Then

(1, 22, 0) = (o, a+ 25, 0)

=T = «
Ty = Oé—f'zﬁ
To — T
=53 = 2 1

2

This implies x = x1(1, 1, 0) + 2572(0, 2, 0)

= x € L(S). Hence W = L(S).

9. What is the subspace generated by (1, 0, 0) and (0, 2, 0) in R3?

Solution. Let S ={(1, 0, 0), (0, 2, 0)}. Then L(S) is the subspace generated
by (1, 0, 0) and (0, 2, 0).

Therefore the required subspace is

L(S) = {(z, y, 2)[(2, y, 2) = (1, 0, 0) + 5(0, 2, 0) = («, 26, 0)}.

This implies that v = o, B = & and z = 0,
Thus the subspace generated by (1, 0, 0) and (0, 2, 0) is given by

{(z, v, 2)|z(1, 0, 0) + %(0, 2, 0)}.

10. Let V' be a vector space over a field F' and S is a subset of a vector space
V(F) such that 0 € S. Show that L(S) = L(S — {0}).

Solution.Case-I If S = {0}, then L(S) = {0} and S — {0} = ¢

= L(S — {0}) = L(¢) = {0}.

Hence L(S) = L(S — {0}).

Case-II When S # {0}. Since S— {0} C S

44



= L(S — {0}) C L(S)........ (1).
Now, let x € L(S). If + =0, then x € L(S — {0}) and L(S) C L(S — {0})
and we are done.

If x # 0, then
k
T = Zaixi, where a; € F, x; € S
i=1
for1<i<n=.

k n
T = E a;xr; + E a;0,
i=1 i=k+1

forx; € S, 1 <1<k
k

= 1= az; =z L(S—{0})...(2).

i=1
Therefore from (1) and (2), we have

L(S) = L(S — {0}).
11. Let V' be a vector space over field R and x1, xo € V. Then

L({ZL‘h 5(72}) = L({C(]l — X9, X1 + IL‘Q})

Proof. We have

L({xy — 29, x1 + 22}) = {a(xy —22) + b(x1 + 22)|a, b € R}
= {(a+b)x; + (b—a)xy}
= {az1+ Brsla=a+band B=b—a}
= {ax; + Bxs|a, B € R}
= L({x1, x2}.
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(4.5) Let Us Sum Up: In this lesson, we have defined span of subset of a
vector space V (F') which turns out to be the smallest subspace of V' and illus-
trated with various examples. The linear span of a subset of a vector space is

also called as generating set for that subspace.

(4.6) Lesson End Exercise

1. Show that S = {(1, 2, 3), (0, 1, 2), (0, 0, 1)} spans V = R3.

2. Find the condition on a, b, ¢ such that

(a, b, ¢) € L({(1L, 2, 3), (1, 2, 4)}).

3. Express the polynomial f(x) = 23 — 32? + x — T over R as a linear combi-

nation of the polynomials 3 — 3z> + 1, 223 — 2z + 5, v — 8.

3 —1
4. Write the vector x = as a linear combination of the wvectors
1 -2
1 1 1 1 1 -1
T, = , Ty = and T3 = )
0 —1 -1 0 0 O

5. Which of the following polynomials are in < x3, x*> + 2z, 2> +2, —x + 1 >
(i) 3a? +x+5 (i) 2> + 32 + 30+ 7 .

Hint Let 322 + . + 5 = a(2?) + b(z? + 2z) + c(2® + 2) + d(—x + 1). Then
322+ x+5=a(@®)+ (b+c)z? + (20 — d)z + (2c + d)

=a=0

b+c=3

2b—d=1

2c+d=5

Solving these equations, we get b+ c=3 and b+ c = 3.
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Takea=0,b=1,c=2,d=1.
We get 32% + 2+ 5 = 0(2®) + 1(2® +22) +2(2* + 2) + 1(—x + 1)

=32 +r+5e<ad, 2+ 22, 22 +2, —x+1>.

(4.7) University Model Questions

1. Let S and S’ be subsets of vector space V. Then show that

(0)S C S = L(S) C L(S")(i)L(SUS") = L(S) + L(5).

2. Let Vi and V5 be subspaces of V. Then show that Vi + V5 is the subspace
generated by V; U V.

(4.8) Suggested text books :(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Unit-I1

Lesson-V Basis and Dimension

5.0 Structure

5.1 Introduction

5.2 Objectives

5.3 Basis and Dimension
5.3.1 Definition of basis

5.3.2 Definition of dimension
5.3.3 — 5.3.10 Theorems

5.4 FEzamples

5.5 Let Us Sum Up

5.6 Lesson End Ezercise

5.7 Unwersity Model Questions

5.8 Suggested Readings

(5.1) Introduction: In this lesson, we study the computation of invariant of
vector space V(F') such as number of elements in the minimal generating set
for V.. Here the minimal means the smallest set under taking subsets.

(5.2) Objectives:(i) the students shall come to know the fundamental unit of
a vector space.

(ii) knowing this unit of vector space students will know the full vector space,
this unit is known as a basis.

(5.3) Basis and Dimension

(5.3.1) Definition: A subset B of a vector space V (F) is said to be a basis
of V if (1) L(B) =V and (ii) B is linearly independent.

(5.3.2) Definition: The dimension of a vector space over a field F is defined
by the number of elements in a basis of V. It is denoted by dimp(V') or dim V.
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(5.3.3) Theorem: A subset B = {1, xa, ..., x,} of a vector space V (F) is
a basis if and only if every x € V' can be uniquely expressed as v = ajx; +
asTo + ...+ apx,, a; € F, 1 <1< n.

Proof Suppose that B = {x1, xa, ..., x,} is a basis of V. Let x € V has two
representations as r = a1xy + aoxo + ... + apx, = bix1 + boxs + ... + byxy,.

Then

(ap — b))z + (ag — bo)xg + ... + (ap, — bp)x, =0
:>a1—b1:a2—b2:...:an—bn:()
(because B is linearly independent)

$a1:b17a2:b2,...,an:bn.

Hence, every x € V' has the unique linear combination of elements of B.
Conversely, suppose that every x € V' can be uniquely expressed as x = ayx1 +

asTo + ...+ apxy, a; € F, 1 < i <n. Then it follows that

V = L(B).

Now, we shall prove that B is linearly independent. For this, consider
a1z + agxs + -+ + apxy, = 0.....(1). Then 0 = 0xy + Oxg + ... + 0zpy......(2).
Since 0 € V' has the unique linear combination of elements of B.

Therefore, from (1) and (2), we have a1 =0 = ... = a,. This implies that B
1s linearly independent and hence a basis for V.

Theorem (5.3.4): Let V' be a vector space of dimension n. Then any n + 1
vectors of V' are linearly dependent.

Proof We shall prove this theorem by induction on n. When n = 1, then
dimV = 1. Suppose that By = {e1} is a basis of V and x1, x5 be any two

elements of V.. Then x1 = ae; and xo = fPe;.
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Casel Ifx1 =0 oraxzs =0, then 1x14+0x9 = 0 or Oz + 129y = 0 is a non-trivial
relation between xy1 and xo. This implies that x1, x5 are linearly dependent.
Hence the theorem is true forn = 1.

Case Il If 1 # 0 and x5 # 0. Then x; = «e; and xo = [es such that
a#0,8+#0imF. Nowa 'fx; —xy =0 is a non-trivial relation between
and xy. This shows that x1, xo are linearly dependent. Hence the theorem is
true for n = 1.

Now, we assume the theorem for all vector spaces of dimension < (n — 1).
We shall prove it for a wvector space of dimension n. For this, let B =
{e1, e, ..., en} be a basis for V. Let xy, xa, ..., Tp, Tpy1 be any (n + 1)
vectors of V. Then x1 = aj1e1 + ajoes + ... + aipe,

To = Q21€1 + A2€2 + ... + A€y

Ty = Ap1€1 + Ap2€2 + ... + Apnén
Tp41 = Q(n+1)1€1 T Ant+1)2 + - - + A(nt1)nCn
Now consider zty = x9 — a1 tan
_ -1 —1
= (a22 — a1 agaig)es + ...+ (azn — a1 a21a1n)€n
I -1
T3 = T3 — a1 ~A31L1
_ —1 -1
= (ass — a11 'agia12)es + ... + (ag, — a1~ tasiar,)e,
/o -1
T, =Tp —a11 AaAp1T1
_ -1 -1
= (Qp2 — @11 ap1@12)es + ... + (Qpp — a11 anlaln)en
/ _ —1
Lpt1 = Tnt1 — Q11 A(n+1)171
_ —1 —1
- (a(n+1)2 — an a(n+1)1G12)€2 + ... (a(n+1)n — a1 Cl(n+1)1@1(n+1))€n
Let W =< eg, €9, ..., e, > be a subspace generated by {es, e, ..., e,}. Since

every subset of a linearly independent set is linearly independent, so W is a
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subspace of V' with dimension n — 1.

Therefore, by induction hypothesis the vectors xy, @, ..., x(, ) are linearly
dependent. This implies that there exists scalars az, as, ..., amy1) not all zero
such that asxh + asxly + ... + a(n+1)x’(n+1) =0.

Substutute the values of x4, x5, ..., m’(nﬂ), we get as(ro—ay tag ) +as(rs—
any tagizy) ..+ a(n+1)(33n+1 - all_la(nﬂ)ﬂl) =0

= —(agai{as + asajias + .. .anﬂal’lla(nﬂ)l)xl +asTo + ...+ api1Tpyr =0
which s a non-trivial relation among x1, To, ..., Tpi1.

This shows that x1, Ta, ..., xnr1 are linearly dependent. Hence the theorem is
true for all mn € N.

(5.3.5) Theorem: Let V be a vector space over F with dim(V') = n. Then
B =A{xy, xa, ..., x,} is a basis of V if and only if B is linearly independent.
Proof. First, suppose that B is a basis of V. Then by definition it is linearly

independent. conversly, suppose that B is linearly independent and x € V' be

any element. Then x, x1, xo, ..., T, are linearly dependent.
= there exists scalars o, aq, ..., a, not all zero such that ax + a1x1 + ...+
anx, = 0. Here a # 0, otherwise x, xy, Ta, ..., x, will become linearly inde-

pendent, which is not true.

Uezists in F = o™ ar + a1x1 + ... + apxy,) =0

Now, a~
=z+atagr; +atagre + ... +atapr, =0

=r=—a ' —a tasry — ... —a tayx,

=z € L(B).

This shows that V- C L(B) and hence V = L(B). Thus B is a basis of V.
(5.3.6) Theorem (Existence Theorem): Let V be a finite dimentional

vector space over a field F'. Then there exists a basis for V.

OR There exists a basis for every vector space.
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Proof Case I If V = {0}, then B = ¢ is a basis of V.

Case I IfV # {0}, then there exists 0 # xy € V. Consider By = {x1}. Then
By is a linearly independent subset of V.

If V.= L(By), then By is a basis of V. If V. % L(By), then there exists
xo € V such that vo ¢ L(B;). Consider By = {x1, x3}. Then By is lin-
early independent subset of V. For this, suppose that By is linearly dependent.
Then there exists scalars «, B not both zero such that axy + Bxrs = 0. Here
B # 0, otherwise By is linearly independent. Now [~ exists in F such that
BN axy + frs) =0

= 19 = —(87a)1y

= 19 € L(By), a contradiction. Therefore By is linearly independent.

If V.= L(By), then By is a basis of V.. If V # L(Bs), then there exists v3 € V
such that x3 ¢ L(By). Consider By = {x1, x2, x3}. Then Bs is linearly in-
dependent subset of V. For this, suppose that Bs is linearly dependent. Then
there exists scalars o, B, v not all zero such that axy + Bxo + vyrs = 0. Here

L exists in F such that

v # 0, otherwise Bs is linearly independent. Now ~~
v~ axy + oy + yrg) = 0

= 13 = —(v ') — (7' B)z2

= x3 € L(Bs), a contradiction. Therefore Bs is linearly independent.

IfV = L(Bs), then By is a basis of V.. If V # L(Bj3), then continuing the above
process. Since V' is finite dimensional vector space, so this process terminates
after finite number of steps. That is untill we get a linearly independent subset
B with dim V' number of elements. Then L(B) = V.

(5.3.7) Theorem (Extension Theorem): Let V' be a vector space of di-

mension n and S = {x1, s, ..., Ty} be a linearly independent subset of V.

Then S can be extended to form a basis of V.
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Proof. If m = n, then there is nothing to prove. If m < n, then L(S) # V.
This implies that there ezists Ty € V such that xp,1 ¢ L(S). Cosider
S1=A{x1, 2y ..., Tpny Ty1}. Then Sy is linearly independent in V. For this,
suppose Sy is linearly dependent, then there exists scalars ay, as, ..., Qm, Gyt
not all zero such that ayxi+asxe+. ..+ apTym+ami1Tme1 = 0. Here, apyq # 0
otherwise S1 is linearly independent which is contradiction to our assumption.
Then there exists ami1 ' € F such that

U1 (a1my + aso + ... + T + Ay 1Timg1) = 0

= Uppg1 0171 + Qg T2To + .o Qs T + Ty = 0

= Ol 01T — Qg1 Q2T — .. — Qg1 O T = Tyngl

This implies that x,,+1 € L(S), a contradiction. Hence Sy is linearly indepen-

dent.
If L(Sy) =V, then Sy is a basis of V. If L(Sy) # V, then there exists T2 € V
such that x, o # L(S1). Cosider So = {x1, T2, ..., Tm, Tmi1, Tmia}. Then

as above, Sy is linearly independent. Again, if L(Sy) =V, then Sy is a basis
of V', otherwise, repeat the above process. But this process terminates after
(n —m) steps as the dimension of V is n. That is, we get a linearly inde-
pendent set B = {1, T2, ..., T, Tty Tmaos-- -, Tn} such that L(B) = V.
Hence there exists a basis for every finite dimensional vector spaces.

(5.3.8) Theorem: Let V be a finite dimensional vector space over F. Then
any two bases of V' have the same number of elements.

Proof. Let By = {x1, x2, ..., xn} and By = {y1, Y2, ..., Yn} be any two
bases of V.

Case I When By is linearly independent and By is a basis: In this case number
of elements of By can not excceed number of elements of By because any n+ 1

elements of V are L.D. This implies that m < n.....(1)
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Case Il When By is linearly independent and By is basis: In this case number
of elements of By can not excceed number of elements of By because any m+ 1
elements of V are L.D. This implies that n < m.....(2)

From (1) and (2), we have m = n. Hence any two bases of a vector space have
same number of elements.

(5.3.9) Theorem: Let Vi amd Vy be two subspaces of a finite dimensional
vector space V(F'). Then

dim(V; + V2) = dim(V}) + dim(V2) — dim(V; N V5).

Proof. Let By = {x1, xa, ..., 2} be a basis of Vi N Vo. Then By is
a linearly independent subset of Vi and V.  Therefore, by basis exten-
sion theorem, By can be extended to form bases of Vi and V,. Let By =
{@1, was ., Ty Thga, -, T} and By = {xy, x9, ..., Tp, T)yy, -, X} be
bases of Vi and V, respectively. That is, dimV}, = m,dimVy, = n and
dim(V; NV,) = k.

Claim: B = {x1, T3, ..., Thy Thgts - -, Ty Thyps - - - Ty} 45 @ basis of Vi+Va.
We first check that B is linearly independent,

for this, consider ayx1+asxa+. ..+ apTp+ Qg1 Tpg1 + . o+ Qi + ) Ty g +
ot axl =0....... (1)

= @101 +agTe+. AT A1 D1+ - A ATy = — A T —. .. — AT, € V5
= @171 + @0y + ...+ AT + 1Tk + ... F AT, € VINTV,

= 171 + @2y + ...+ QpTp + Qg1 Tki1 + - - F QT = b1 + ..+ b

= (a1 — by)x1 + (ag — bo)xa + ... + (ap — bp)zk + aps1Tpi1 + - + Ty =0
= Qg1 = ... = ay, = 0 as By s linearly independent.

Put these values in (1), we get a1214+asTo+. . . A+axTp+a) 1 Tpp1+. . . Fapz), =0
= a =0 =...=a, = a;ﬁq = ...=al, =0 as By is linearly independent.

Hence B s linearly independent.
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Now, let v € Vi + V. Then v = y + 2z, where y € Vi and z € V.
Therefore, y = a1x7 + asxy + ... + apXp + Qpr1Tky1 + ... + Ty and
2 =bixy +bywy + ..+ by +ag T AT,

Now x = a1x1 + asxy + ... + QpX + Qg 1Thi1 + QT + 0121 + boxg + ... +
brik + Gy Ty + 027,

=z = (a1 + b))x1 + (ag + bo)wy + ... + (ag + br)xk + Apr1Tk41 + OmTom +
T + A,

= x € L(B). This implies that
V = L(B).

Hence B is a basis of Vi + Vs

and dim(Vy + Vo) =k+(m—k)+(n—k)=n+m—k

= dim(Vj + V) = dim V] 4+ dim V5 — dim(V; N V3).

(5.3.10) Theorem: Let V be a finite dimensional vector space over a field F
and W be its subspace. Then

dim(V/W) =dimV — dim W.

Proof. Let By = {z1, za, ..., xx} be a basis of W. Then By is a linearly
independent subset of V. Now, by extension theorem By can be extended to
form a basis of V. Let By = {x1, T2, ..., Tk, Tht1,.. 2, ) be a basis of V.
Claim: B = {xjy1 + W, 2o+ W, ..., x, + W} is a basis of V/W.

First , we shall prove that B s linearly independent.

For this, consider a1 (k1 + W)+ ... +ap(x, + W) =0+W

= (ap1Th1) + W+ .o+ (apx,) + W =W

= (ap1Tps1 + .-+ apzy) + W =W

= (ag1Thp1 + - .-+ apx,) €W

= Qg1 Thy1 + oo T ATy = A1T1 + Q222 + ... + QT
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= a1 + Qo + ... + ATk — Ay 1Tpt1 — -+ - — ATy =0
=a=a=...=a, =0.

Hence B is linearly independent.

Now, let © + W € V/W be any element. Then x € V = = = a1x1 + agxy +
oot apxk + Qe T4 oo+ ARy

= o+ W= (aqz1 +asxs+ ... + apTy + Qi1 Tpr1 + - ..+ apty) + W
=z+ W= (az1 +axs+ ...+ apry + Qg 1Tp11 + - .-+ apzy) + W
=z+ W= (az1+axs+ ...+ apzy) + W+ (ap1Tp1 + - .-+ apzy) + W
=W+ (app1Tps1 + ...+ apzy,) + W

= (Qps1Tps1 + - -+ apzy) + W

= (akt1ZTp41) + W+ .o+ (anzn) + W

= ap1(Tp1 + W)+ ...+ an(z, + W) € L(B)

=+ W € L(B)

= V/W = L(B).
Hence B is a basis of V' and
dim(V/W)=n—k =dimV — dim W.

(5.4) Examples
1. Let V.= R"™ be a vector space over R. Then B = {e; = (1, ...,0), e5 =
(0,1,0,...,0),...,e,=(0,..., 1)} is a basis of V.

Let’s first show that B is linearly independent. For, suppose that ai(1, ..., 0)+
ot an(0, ..., 1) =(0,0,...,0)

= (a1, ..., a,) = (0,0,...,0) = a1 = ay = ... = a, = 0. Therefore
{e1, ..., e,} are linearly independent.

Now, we know that L(B) C V. Let x € V = © = (21, xa, ..., T,), for
r; € R, V2
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=z=x1(1,0...,0)+...+2,(0,0,...,1)

=z € L(B)

=V C L(B).

Thus, V- = L(B) and B is a basis of V. Also, dim(V') = n.

2. Let V = Flx] be a vector space of polynomials. Then B = { fy(x) = z*|k =
0,1, 2, ...} forms a basis for V.

Solution First, B is L.I.

For this we shall show that every finite subset of B is linearly independent i.e
{fo, f1, -, fu} is linearly independent

aofo+...+a,fn=0

= at+ar+...+a,2" =0

=a=a=...a, =0.

Every f(x) € Flz] can be written as f(x) = ag + a1z + agz? + ...

= f(z) € L(B). Hence B is a basis of V and dim(V') = oc.

3. Let V. = F,[z] be a vector space of polynomials of degree < n. Then
B={fu(x) =2k =0,1,2,...,n} forms a basis for V.

Solution. First, we see that B is linearly independent.

For this, we consider a;(1) + az(xz) + ...+ a,z” =0=0(1) + 0z + ... + 0x™
=a=0=...=a,.

This shows that B is linearly independent.

Now, L(S) c V. Let f(x) € V. Then f(x) = ag + a1z + ... + a,z™ and
m<n

= f(x) =ap+az+ ...+ apx™+ 0™ + .. 4+ 02"

= f(z) € L(S)

=V C L(9).

Hence V.= L(S). The dim(V) =n + 1.
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4. Show that the vectors (1, 1, 1), (1, 0, 1) and (1, —1, —1) of R3 form a basis
of R3.

Solution To show that B = (1, 1, 1), (1, 0, 1), (1, =1, —1) form a basis of
V', it 1s enough to check that B is linearly independent. For this, consider
a(l,1,1)+5b(1,0, 1)+ ¢(1, =1, —=1) = (0, 0, 0)

= (a+b+c,a—c,a+b—c)=(0,0,0)

a+b+c=0

a—c=0

a+b—c=0
11 1 a

= (1 0 —1| (b Z[O 0 ()]
11 =1 |e
11 1

then |1 0 —1|=2%#0

11 -1
=a=b=c=0. Hence, B is a basis of V.

(5.5) Let Us Sum Up: In order to understand the vector space structure, it
s enough to understand its basis. So basis of vector space is the integral unit
of vector space. In this lesson we have defined basis and dimension of a vector
space and illustrated these notions with examples. With the existence theorem,
extension theorem, we have observed that every vector space has a basis and

every linearly independent subset of it can be extended to form a basis.

(5.6) Lesson End Excercise

1. Ezamine whether the following set of vectors in R3 form a basis or not:

(i) (1,0, —1), (1, 2, 1), (0, =3, 2)
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(i) (1,1, 1), (1, 2, 3), (=1, 0, 1)

(iii) (1, 2, —1), (0, 1, 2), (3, =1, 1)

() (1,0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1).

2. Let V. = {la;] : a;;j € R, 1 < 4,5 < 2}. Then show that the set
10 1 0 00 00
0 0| oo [1o0] |01

3. Show that the dimension of the vector space Q(v/3) over Q is 2.

4. Eztend B = {(1, 2, 5)} to form a basis of R3.

Hint: Since (1,0,0) ¢ L(B) as L(B) = {(«a, 2, ba) : a« € F}. = By =

{(1,2,5), (1,0, 0)} is linearly independent. Also, (0, 1,0) ¢ L(B;). There-

fore, Bo ={(1, 2, 5), (1, 0, 0), (0, 1, 0)} is linearly independent. Hence By is

form a basis of V.

an exended basis of R3.
5.Let V.= {f(z) € Rlz]|deg(f(x)) < 3} be a vector space of polynomials over
R. Show that dim (V') = 4.

(5.7) University Model Questions

1. Define a basis of a wecor space V(F). Show that B =
{(1,0,0), (0, 1, 0), (0,0, 1)} is a basis of R3. Find a basis of R® different
from B.

2. Let V be a finite dimensional vector space over F' and W be its sub-
space. Prove that dim(V/W) = dimV — dim W.

3. Let Vi and Vs be two subspaces of a finite dimensional vector space V.. Show
that dim(V; + V3) = dim V; 4+ dim Vo — dim(V; N'V3).

(5.8) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-VI Isomorphic vector spaces

6.0 Structure

6.1 Introduction

6.2 Objectives

6.3 Isomorphic vector spaces

5.3.1 Definition of Isomorphic vector spaces
6.3.2 — 6.3.5 Theorems

6.4 Ezamples

6.5 Finite and infinite dimensional vector spaces
6.5.1 Definition

6.5.2 FExample

6.6 Let Us Sum Up

6.7 Lesson End Ezercise

6.8 Unwversity Model Questions

6.9 Suggested Readings

(6.1) Introduction : As we are familiar with the notion of isomorphism of
groups and isomorphism of rings, we can also define isomorphism between two
vector spaces. In the definition of isomorphism between two vector spaces, we
assume the both the vector spaces over the same field. A wvector space homo-
morphism is also called as a linear transformation .

(6.2) Objectives: (i) In this lesson, students will learn the algebraically same
vector spaces upto isomorphism

(13) they will learn how two vector spaces can be differentiated.

(6.3) Isomorphic vector spaces

(6.3.1) Definition: Vector Space Homomorphism or Linear Trans-

formation: Let V and W be vector spaces over the field F'. Then a mapping
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T :V — W is said to be a linear transformation or vector space homomor-
phism if

() T(x+y)=Tx)+T(y),Yae,yecV

and (i) T(az) =aT(z),YVz €V ,a€F.

A linear transformation T : V(F) — W(F) is said to be an isomorphism if
T is one-one and onto. The vector spaces V. and W are said to be isomorphic
if there exists an isomorphism between them and can be written as V = W.
(6.3.2) Theorem Let T : V(F) — W(F) be a linear transformation. Then
(1) T(0) =0'(i5) T(—x) = =T (x)(iii) T(x —y) =T (x) — T(y), Y,y € V.
Proof (i) We have 0+0=0= T(0+0) =T(0)

=T(0)+7(0)=T(0)+0

=T(0)=0".

(1) We have x + (—x) =0

=T+ (—2)=T0)=T(x)+T(—x) =0

= T(z) = -T(z).

(i) T(x —y) = T(x + (=y)) = T(x) + T(—y) = T(x) = T(y) (by (i)
(6.3.3) Theorem Let V' be a vector space over a field F' with dimV = n.
Then V = F™.

proof. Let B ={x1, xa, ..., 2,} be a basis of V.. Then every element x of V

can be uniquely written as

n
xr = E a;T;.
i=1

Now define a rule T : V — F™ by

n

T(Z a;x;) = (ay, ag, ..., ap).

i=1
(I) T is well-defined function: Let x =Y "  a;x; and v =Y, bjx;. Then
D i Wiy = Y bits
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= > (a; —b)x; =0

=a;—b=0,V1

=a;, =b;, V1

= (a1, ag, ..., a,) = (b, ba, ..., by)

= T3 wwi) = T3, biv).

This implies that T is a well-defined function.

(II) T is linear transformation:

=1 =1

= T(Z(@i + b;) ;)

=1

= (a1+b1,a2+b2, ,an—l—bn)

= (a1, ag, ..., a,) + (b1, bay ..., by)

n

— T(Z a;w;) + T(Z bix;)

_ T 4T

Also,
T(azx) = T(aZaixi)
i=1

= T(i aa;x;)
i=1

= (aay, aay, ..., aay,)
= ofa, ag, ..., ay)

= aT(i a;x;)

= ozT(sz)l

Therefore, T is a linear transformation.
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(III) T is one-one: Let

n n

T(Z a;x;) = T(Z bix;)

i=1 i=1

(a1, ag, ..., ap) = (b, bg, ..., by)
=1 =1

Hence T is one-one.

(IV) T is onto: For each (ay, ag, ..., a,) € F", there exists x =Y | a;x; €
V' such that T(Y"7 | ax;) = (ay, ag, .., ay).

Hence, T is an isomorphism and V = F™.

(6.3.4) Theorem LetV and W be finite dimensional vector spaces over F.
Then dim(V') = dim(W) if and only if V = W.

Proof Let us first suppose that dim(V) = dim(W) = n(say). Let By =
{x1, 2, ..., x,} and By = {y1, Yo, ..., Yn} be bases of V and W respectively.
Define a rule T -V — W by

T(Z Gil‘i) = Z ;Y-
i=1 i=1

Then T is a well-defined function as every element in V' as well as in W has
the unique representation.

Now, T is linear transformation:

n

T(Z a;x; + Z bix;) = T(Z(“z’ + bi)xi)

i=1
n

=1
= Z a;Yi + Z biy;
=1 =1
=1 =1
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Also,

T(aZaiwi) = T(Zaaﬂi)

i=1

T is one-one: Let

T(Z a;r;) = T(Z biz;)

i=1
Z aiy; = Z by
=1 =1
Z(ai bi)yy = 0
=1
a; bz = 0
a; = bi, Vi
=1 =1

T is onto: For each y = Y ! ,a;y; € W, there exists x = Y . ax; € V
such that T(x) = T (31, a;z;) = Y iy aiy;. Hence T is an isomorphism and
V=Ww.

Conversely, suppose that V=W and T : V — W is an isomorphism. To
show that dim'V = dim W, we need to show that the bases of V and W have
the same number of elements. For this, let B = {x1, xa, ..., x,} be a basis of
V.

Claim: B' = {T(xy), T(x3), ..., T(x,)} is a basis of W.
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For, consider a1T (x1) + axT(z2) + ... + a,T(x,) =0

= T(a1x1) + T(agzs) + ...+ T(ayz,) =0

= T(a1z1 + agxe + ... + ayz,) = T(0)

= a1 x1 + axo+ ...+ a,r, =0

= a1 =ay=...=a, =0 as B is linearly independent.

Now, let y € W be any element. Then there exist x € V' such that T'(z) = y.
This implies that x =Y . a;x; and y =T (x) =T (O 1, aiz;)

=2 @l (xy)

=y€eLB)=V=LH).

Hence B’ is a basis of W and dim W =n = dim V.

(6.3.5) Theorem Let V and W be vector spaces over a field F. Then a
mapping T : V' — W is a linear transformation if and only if T(ax + Py) =
al(z)+ pT(y), Y a, B € F andx,y €V.

Proof. Suppose that T : V- — W s a linear transformation. Then T(ax +
By) =T (ox) + T(By)

= oT'(x) + BT (y)

= T(ax + By) = oT(z) + BT (y).

Conversely, suppose that T(ax + By) = oT'(x) + T (y)

Put o = 1= 0, the we get T(x +y) =z +y.

Now put B =0, we get T(ax) = T(azx + 0y) = aT'(x) + 0T (y)

= oT(x).

Therefore T' is a linear transformation.

(6.4) Examples

1. The mappings O -V — W and I :' V — V defined by

Ox)=0,Vz eV
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and

I(z)=z, V2 €V

respectively are linear transformations.

For these, we have O(x +y) =0 =040 = O(x) + O(y) and O(ax) =0 =

a0 = a0(z).

Similarly, [(x+vy) =o4+y=I1(x)+1(y),Vz,y €V and I[(azx) = ax =
al(z), Ya e F.

2. Let V= F" be a vector space over the field F'. Then the mapping defined by
T((a1, ag, ..., ay)) =ay,Va;, € F,i=1,2, ..., nis a linear transformation.
For this, T((ay, ag, ..., ap) + (by, bay ..., by))

=T(a1+0b1, ..., a,+0b,) =T((a1 + b1, ..., a,+by)) =a1+ b

= T(al, ag, ..., an) +T<b1, bQ, N bn)

and
T(a(ay, ag, ..., ay)) = T(aay, aay, ..., aay,)
= aay
=aT(ay, ag, ..., a,).

3. Let V = F[x] be the vector space of polynomials over a field F and V' = F.
Then the mapping T : V. — V' defined by T'(ag+ a1z + asx® + . . . + a,x™) = ag
15 a linear transformation. For this,
T((ap + a1 + ax® + ... + apa™) + (b + b1 + box® + ... + b2™)) = T((ap +
bo) + (ay + b1)x + (ag + b2)x? + ... + (a, + by)z™)
= ag + by
=T(ap + a1 + asx® + ... + a,z™) + T'(bg + bz + box® + ... + b,x™).
Now, T(a(ag + a1z + ... + a,z™)) = T(aag + carx + ... + aa,z")

= aay

=aT(ap + a1 + ... + a,z™).
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4. Let V = C|0, 1] be the space of real valued continuous functions on [0, 1]
and V' = R. Then mapping T : V — V' defined by T(z(t)) = x(3),Vz €V
s a linear transformation.

For this, we have T'(z(t) + y(t)) = ((x +y)(t)) = (v + y)(%)

Similarly, T(a(z(t))) = T(« (t))
)

=aTl(z(t)), Vx € V and Va € F.
5. Let V.= C and V' = R? be vector spaces over R. Then the mapping
T:V — V' defined by T'(a + tb) = (a, b) is an isomorphism.
Solution First we shall show that T is a linear transformation. For this,
T((a+ ) + (c+d)) =T((a+c) + t(b+d))
=(a+c b+d)
= (a, b) + (¢, d)
=T(a+ tb)+T(c+d).
Now, T(a(a + b)) = T'(aa + tab)
= (aa, ab)
= afa, b)
= oT(a+ b).
Now, T is one-one
For this, let T(a + b) = T'(c + d)
= (a, b) = (¢, d)
=a=candb=d
=a+tb=c+.d.
Also, T is onto. For this, for each (x,y) € R? there exists x + 1y € C such
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that T(x + wy) = (x, y). Hence T is an isomorphism and C = R?.

6. Let Th : V — W and Ty : V. — W be two linear transformations. Then (i)
the mapping Ty +15 : V- — W defined by (T1 + 1) (x) = Ty (z)+Ts(x), Ve € V
s a linear transformation and

(ii) (oT)(x) = aT'(x) is also a linear transformation.

Proof First, (T\ + T3)(x +y) = Ti(x + y) + Ta(x + v)

= Ti(z) + Ta(y) + To(x) + To(y)

= (Ti(x) + Ta(x)) + (Ta(y) + Ta(y))

= (T + T3)(2) + (11 + T2)(y).

Now, let o € F' and x €V,

then (Ty + Tz)(ax) = Ty (ax) + Ty(ax)

= o7 (x) + aTy(x)

= o(Ti(z) + Tr(z)) = (T} + 1) ().

This shows that T1 + Ty is a linear transformation.

(i)(T)(x +y) = oT(x +y) = (T(x) + T(y))

= aT'(z) + aT(y) = (aT)(x) + (aT)(y)

~ (aT)(z +3).

Similarly (aT)(ax) = aT'(azx) = aaT(x) = aad'(z) = a(aT)(z)

= o' 1s a linear transformation.

(6.5) Finite dimensional and infinite dimensional vector spaces
(6.5.1) Definition A wvector space V' over a field F is said to be a finite
dimensional if dim(V) < oo and V is said to be an infinite dimensional if
dim(V') is not finite.

(6.5.2) Example The vector space R over Q is not finite dimensional.
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Solution Suppose that R is a finite dimensional vector space over Q. Then
R=Q"

which in not true because Q" is countable set whereas R is uncountable. There-
fore, R is an infinte dimensional vector space over Q.

(6.6) Let Us Sum Up In this lesson, we defined vector space homomorphism
and vector space isomorphism, then explored various properties of homomor-
phism. Then illustrated this notion with the help of examples. In the end, the

finite and infinite dimensional vector spaces have also been discussed.

(6.7) Lesson End Exercise

1. Let V = F""' and W = F,[x], the space of all polynomials of degree atmost
n. Define the mapping T : V — W by T(ag, a1, ..., a,) = ag + a1 + aszx® +

..+ ayz™. Show that T is an isomorphism.

a
2. LetV = la,be Ry and V' ={a+1ib| a, b e R} be vector
b a

spaces over R. Then show that V = V',

3. Let V = {(x1, x9, 0)|w1, 29 € R} be a subspace of R3. Then show that
vV~ R2.

4. Let V and W be two vector spaces over a field F. Then the set L(V, W) of
all linear transformations of V in W forms a vector space over F under the

operations + and scalar multiplication defined as
(Ty + T3)(z) = T\ (x) + Tr(z) and (aT)(x) = aT'(x)

respectively.

Solution. Properties under +:
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(i) Let Ty, Ty € L(V, W). Then Ty(az + By) = T (z) + BT1(y)
and Ty(ax + By) = aTy(x) + BTa(y)V x,y € V and Vo, B € F Now, (T} +
Ty)(ax + By) = T (ax + By) + Te(ax + By)
= aTi(z) + fT1(y) + Tz (x) + BTa(y)
= a(Ti(z) + Ta(x)) + B(T1(y) + Ta(y))
= a(Ty + To)(x) + (11 + T2)(y)
= (1 + o) (ax + By) = Ty + Ta)(x) + B(T1 + T2)(y).
(17) Let Ty, Ty, T3 € L(V, W).
Then ((Th + Tz) + T3)(x) = (T + Ts) (z) + T3(x)
= (T1(z) + Ta(x)) + T3(x)
= Ti(x) + (Ta(z) + Ts(x))
=Ti(z)+ (Ty + T3)(x)
=(T1 + (Tx + T3))(x)
=N +T)+T3=T+ (To + T3).
(i7i) Define O :V — W by O(z) =0,V z in V.
Then O(azx + By) = 0= a0 + S0 = aO(x) + O(x)
= 0 € L(V, W) such that
(T+0)(z)=0(x)+T(x)=0+T(x) =T(x), VT € L(V, W).
(tv) For each T € L(V, W), define =T : V — W by (—=T)(z) = =T (x). Then
(=T)(ex + By) = =T(ax + By)
= —(aT'(z) + BT (y)) = —aT(z) — ST (y)
a(=T(z) + B(=T(y))) = a(=T)(z) + 5(=T)(y)
= —T € L(V, W) such that (=T +T)(x) = =T (z) + T(z) = 0.
(v) Let Ty, Ty € L(V, W). Then (T1+T3)(z) = Th(x)+Te(z) = To(x)+Ti(z) =
(Ty + T1)(x)
=T+ Ty =Ty +Ty. Thus L(V, W) is an abelian group under +.
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Properties under scalar multiplication: Let o, 8 € F and T, T1, T5 €
L(V, W). Then
() [(a+ B)T(z) = (a+B)T(x)
= aoT(x)+ pT(x)
= (aT)(x) + (BT)()
= (o1 +pT)(x)

= (a+08)T = oT+pT.

(@) (T + T)|(z) = a(Ti(z) + Tx(z))
= oTy(z) + aTs(z)
= (aT1)(z) + (o13)(z)
= (T} + aT)(z)

= Oé(Tl + TQ) = ol + oTs.

(#2) [(aB)T(z) = (af)T()

= (apf)T = «apT).

(iv) A7) (z) =1T(z) =T(x) = 1T =T.
This shows that L(V, W) is a vector space.

(6.8) University Model Questions

a 0
1. Prove that the subset of matrices in My(F) for all a € F field is a
0 0

vector space over F', which is isomorphic to the field F.
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2. Show that the linear transformation T : R* — R defined by T'(z, y) = x is
onto but not one-one.

3. Show that the linear transformation T : R? — R3 defined by T(z, y) =
(x, x —y, x +y) is one-one but not onto.

(6.9) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-VII Dual space of finite dimensional vector spaces

7.0 Structure

7.1 Introduction

7.2 Objectives

7.3 Linear functionals

7.3.1 Definition of linear functional
7.4 Dual Spaces

7.4.1 Definition of dual space
7.4.2 —7.4.3 Examples

7.5 Let Us Sum Up

7.6 Lesson End Exercise

7.7 Suggested Readings

(7.1) Introduction: As we have proved in the exercises of previous lesson
that L(V, W) the set of all linear transformations from a vecor space V(F') to
W(F) is a vecor space over the field F'. Here in this lesson we will study its
particular part i.e L(V, F) the set of all linear functionals on V' which turns
out to be a vector space over F'.

(7.2) Objectives In this lesson, we define the dual space of a vector space
and illustrate with Examples.

(7.3) Linear functional

(7.3.1) Definition: A linear transformation f : V — F from a vecor space
V(F) to the field F is called linear functional on V.

(7.3.2) Example: Let V = R? be vector space over a field R. Then a map-
ping f:V — R defined by f(x, y) = x—vy, is a linear functional on V because
f is a linear transformation.

(7.4) Dual spaces
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(7.4.1) Definition: Let V' be a vector space over a field F'. Then the vecor
space L(V, F) of all linear functionals on V is called dual space of V and is
denoted by V* 1i.e.

V*=A{f|f:V — F is linear functional }.

(7.4.2) Example : Let V = R? be a vector space over R. Then show that its
dual space is given by V* =< (f1, fo)lfi(z, y) = x and fo(x, y) =y >.
Solution Let B = {(1, 0), (0, 1)} be a basis of V. Define the rules f, : V. — R
and fo 1V — R defined by fi(z, y) = a1x + bry and fo(x, y) = asx + bay re-
spectively,

1 ifi=y

0 it

Now, we shall show that for each i = 1, 2, f; is linear functional on V. For

where f;(e;) =

this, fi(a(z, y) +0b(2', v")) = filax + b2, ay + by)
= a1(azx + bz’) + by (ay + by')
= a(a1z + biy) + b(ar1z’ + b1y)
=afi(z, y) +bfi(z, y).
Similayly we can see that fo(a(z, y)+b(2', y')) = afe(z, y)+bfa(x, y) . There-
fore, f1, fo are linear functionals on V.
We claim that B* = {f1, f2} is a basis of V*. First we check that B* is linearly
independent, for this cosider ayfi1 +asfo =0, a; € F,i =1, 2
= (a1 f1 + a2 fo)(ei) = O(e;)
= ayfi(e1) + aafaler) = O(ey)
= (1) +a2(0) =0
=a; =0
Similarily oy fi(e2) + agfo(ea) = O(es)
= o1(0) +a2(1) =0
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= ay = 0 Therefore, {f1, f2} is linearly independent. This implies that B* is
linearly independent.

Now we shall show that B* spans V*. For this, let f € V* be any element and
f(z;) = a; for1 <i<2.

Then , ) ,
= f(z aiei) = Z aif(ei) = Z ;0.
=1 1=1 i=1
Now
2 2
- fz(z aje;) = Z%’fi(@j) = Q.
i=1 i=1
Therefore

2

f(x) = Zaz‘fi(x)'

=1

This implies that

2
f= Zaifi
i=1
Thus V* = L(B*).
(7.4.3) Example Let V = {a + bx + ch\a b, ¢ € R} be a vector space

of polynomials of degree < 2. Let fi(p fo t)dt; fo(p(t)) = p'(1) and
f3(p(t)) = p(0) for all p(t) € V. Find the basis {p1, pa, ps} which is dual to
{fla f27 f3}

Solution Let py(t) = a1+bit+cit?, pa(t) = ag+bot+cot?, p3(t) = az+bst+cst?
be any element ofV where a;, b;, ¢; are real numbers fori =1, 2, 3.

Now, fi(p1(t) fo ar + bit + ey t?) dt = a; + 2 + 2

f2(p(t) = E(al + bit + 18?121 = by + 2¢4

fs(p1(?)) = p1(0) = ar.

Now by the definition of basis of V* as done in above example, we have

fl(Pl) =1, fz(Pl) =0, fs(Pl) =0
:>1:a1+%1+%1, b1+20120, a; =0

I0)



:>a1:0,b1:3 61:_73

= pl(t) =3t 32 =3t - %

f2(p2(t)) = E(CLQ + bot + cot )‘t:l = by + 2¢9
f3(pa(t)) = p2(0) = a

Now by the definition of basis of V* , we have f1(pa) =0, fa(p2) =1, f3(p2) =

0
=a+2+2=0b+20=10a=0
= ay =0, by == 02:%
= polt) = Ft + 32 = St %L
Also, f1(ps(t)) = fl(a3+b3t+03t2)dt:a +%3+%3
fo(ps(t)) = L(az + bt + c5t?)|s=1 = b3 + 2c3
) =

f3(p3( ) p3(0) = a3

Now by the definition of basis of V* , we have fi1(ps3) =0, fa(ps) =1, f3(p3) =

0

:>a3—|—b73+%320

bg+2C3:O
a3:1
:>6L3:]_,b3:—3,03:§

= ps(t) =1 -3t + 32

. : * 3t2 -t , 32 3t2
Thus the required basis for V* is {3t — =~, 5 + >, 1 =3t + = }.

Let Us Sum Up (7.5) In this lesson we have defined linear functional and

dual space of a finite dimensional vector space, then illustrated these concepts

with examples. As we have learnt that knowing the basis of wvector space is

enough to know the vector space. Therefore in order to compute the dual space

of given vector space it is enough to compute the basis of it which we have done

76



in few examples.

(7.6) Lesson End Excercise

1. Find the dual space of the vector space R3 with respect to the standrad basis.

2. Let V =R3 be a vector space with basis
{(1, -1, 3), (0, 1, —1), (0, 3, —2)}.

Find basis of dual space V*.

3. Let B={(-1,1,1), (1, =1, =1), (1, 1, —=1)} be a basis of R®. Find basis
of dual space V*.

(7.7) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra, Prentice Hall India.

7



Lesson-VIII

Dimension of Dual space of finite dimensional vector space

8.0 Structure

8.1 Introduction

8.2 Objectives

8.3 Dimension of dual space
8.3.1 Theorem

8.4 Dual Basis

8.4.1 Definition of dual space
8.4.2 Theorem

8.4.3 — 8.3.4 Corollaries 8.5 Examples
8.6 Let Us Sum Up

8.7 Lesson end exercise

8.8 University Model Questions
8.9 Suggested Readings

(8.1) Introduction: With the given vector space we can construct its dual
space. It is interesting to know the dimension of dual space that turns out to
be same as that of vector space in case of finite dimensional vector spaces.
(8.2) Objectives: In this lesson, the students will learn to compute explicitly
a basis for dual vector space knowing the basis of given vector space.

(8.3) Dimension of dual space

(8.3.1) Theorem: Let V' be a finite dimensional vector space over F. Then

dimV = dim V*.

Proof Let B = {x1, xa, ..., x,} be a basis of V. Now, for each i, 1 <i <mn,

78



define mapping f; : V — F by

fz(z T;) = Q.
i=1

Then f; is a linear functional on V', for each i and B* = {f1, fo, ..., [n} is a
basis of V*.
For this, let x,y € V and o, f € F, then for each i, fi(ax + By) =
filad iy ajz; + B35 Bixy)

= i o1 (a0 + BB;)x;)

= ao; + BB

= af;(> 5 ajzy) + B 25 Bir;)

= afi(x) + Bfi(y).
Therefore, for each i, f; is a linear functional.

Further, for each i, j such thatl <1, j < n we have

1 ifi=y

0 ifiti

We claim that B* is a basis of V*. First we check that B* is linearly indepen-

fi(zy) =

dent, for this cosider

arfi+tasfo+...+anfn = O, €F
= (fitafo+...+afu)z) = Ox;)
= o fi(x) + Qo fo(@) 4+ .+ anfulz) = O
= a1(0) +a2(0) + ... +a;(1) + ... +a,(0) = 0

Therefore, {f1, fo, ..., fa} is linearly independent. This implies that B* is

linearly independent.
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Now we shall show that B* spans V*. For this, let f € V* be any element and

f(x;) =a; for 1 <i<n. Then

flz) = f(ZOéiSUz')

Now fi(x) = fi(Zozjxj)

Hence f € L(B*). This shows that L(B*) = V* and B* is a basis of V*.
Therefore

dimV = dim V*.

(8.4) Dual Basis
(8.4.1) Definition Let B = {1, xa, ..., ,} be a basis of a finite dimen-
sional vector space V.. Then for each 1 < i < n the set of linear functionals

onV defined as
1 ifi=

0 ifi#]

fi(z;) =
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forms a basis of V* and is known as dual basis of B. It is denoted by
B ={fi, for - S}

(8.4.2) Theorem Let V' be a finite dimensional vecor space over the field
F and 0 # x € V. Then there exists a linear functional f on V such that
f(x) 0.

Proof Since © # 0 in V. Therefore, {z} is a linearly independent suset of V
ans so it can be extended to form a basis of V. Thus, there exists a basis B =
{x1, 2, ..., x,} of V such that x = x1. If B' = {f1, fa, ..., [n} is the dual
basis, then fi(x) =1 and fi(x;) = 0. This implies thatf,(z) = fi(x1) =1 #0.
Thus there exists f € V* such that f(x) # 0.

(8.4.3) Corollary Let V' be a finite dimensional vector space over the field
Fand f(x) =0,V f € V*. Thenz =0.

Proof Suppose that x # 0. Then by the theorem, there exists a linear func-
tional f on V' such that f(x) # 0 which is a contradiction to the fact that
flx)=0,V f eV~

(8.4.4) Corollary Let V' be a finite dimensional vector space over the field
F and z, y be two different vectors in V. Then there exists a linear functional
f on'V such that f(x) # f(y).

Proof Here we have v # y = = —y # 0. Then by the theorem (8.2.4), there
exists a linear functional f on V' such that

flx—y) #0= f(x) — fly) #0

= f(z) # [(y).

(8.5) Examples 1. Find dual basis for the basis {(1, 0), (0, 1)} of R2.
Solution Let B = {(1,0), (0,1)} = {ei, ea} be a basis of of R* and
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B* ={f1, f2} be its dual basis such that

filz,y) = ax+ by

1 ifi=y
fo(z,y) = aw +boy where fi(e;) =
0 ifi#y
Now fi1(1,0) = a3 =a; =1
fl(O, 1) = b1 = b1 =0
fg(l, O) = CL2:>CL2:O
fg(o, 1) = bg = b2 =1

Therefore fi(z, y) = x and fo(z, y) = y so that B* = {x, y} is the required

dual basis.

2. Let B=1{(1, —1, 3), (0, 1, —1), (0, 3, —2)} be a basis of R®. Find its
dual basis.
Solution Let B = {ey, e, e3} = {(1, —1, 3), (0, 1, —1), (0, 3, —2)} be the
given basis of R3. Since the dimension of the vector space is same as the

dimension of its dual space. Therefore the dual basis of B contains 3 elements.

Let B* = {fi1, fo, f3} be the dual basis of B such that

filz) = aix+ay + asz
fg(l’) = bll' + bzy + ng
1 ifi=j

0 ifi#j

fs(x) = cix+ coy + c3z where fi(e;) =



= f3(61> =0, f3(62> =0, f3(63) =1

fl(el) = CL1—CL2+3CL3:>1:G1—CL2+3(I3
f1<62) = CLQ—CL3:>O:CI,2—CL:J,

files) = 3as —2a3 = 0= 3ay — 2as3

Solving these equations, we get a; = 1, ay = 0, azg = 0. Therefore fx, y, 2) =

x.
Stmilarily,

fg(el) = bl—b2+3b3:>0:b1—b2+3b3

f2(€2) = bg—b3:>1:b2—b3

fg(eg) = 3b2 — 2b3 =0= 3b2 — 2b3
Solving these equations, we get by = T,by = —2, b3 = —3. Therefore

folz, y, 2) = Tx — 2y — 3z. Also,

f3(€1) = Cl—CQ+363:>O:Cl—CQ+363
fales) = co—c3=>0=co—c3

f3(€3) = 3c2 —2c3 = 0 =3¢y — 2c¢3

Solving these equations, we get ¢y = —2, co =1, c3 = 1.

Therefore fs(z,y, z) = —2x + y + z and the required dual basis is B* =
{z, T — 2y — 32z, 2z +y + z}.

3. Let V' be the vector space of all polynomials in t over R of degree < 2. Let
1, to, t3 be distinct real numbers and T; : V — F' be linear functions defined
as T;(f(x)) = f(t;) fori=1,2,3.

Prove that (i) {11, Ts, T3} is a basis of V*.

(i1) Find a basis of V' such that {Ty, Ty, T5} is its dual basis.
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Solution (i) Consider a linear combination o1y + 515 + 15 = O
(OéTl + /BTQ —F’)/Tg)(l) = O(Gi), Vi= 1, 2, 3.

= a+B+y=0.... (1)

ady(t) + BTL(t) +15(t) =0

= aty + Bty + 7tz = 0o (2)
Ty (82) + BT (t?) + T3(t%) = 0
= at? + Bty® + 32 = 0. (3)

o) 0
From (1), (2), and (3), we get | t; ty t3| |B| = |0]-
¥ 0

1 1 1
Now |ty 1y tg|=(l2—t)(ts —t2)(ts —11) # 0

th? ty® ts?
= a = [ = = 0. Hence {T1, Ty, T3} is linearly independent. Since
dim V* = 3 so {11, Ts, T3} is a basis of V*.
(it) Let B = {px), p2(x), ps(x)} be a basis of V' for which B* = {11, Ty, T3}
1s its dual basis.
Then Ti(pi(x)) = 1, Ta(pi(x)) = 0, Ts(p1(x)) = 0.
= pi(t1) =1, pi(t2) =0, pi(t3) =0
= x — ly, x — t3 are the factors of p1(x). Thus, p1(x) = %
Similarly, Ty (p2(z)) = 0, Ta(pa(x)) = 1, T3(pa(z)) = 0.
= p2(t1) = 0, pa(t2) = 1, pa(ts) = 0
= x — 11, x — t3 are the factors of pa(x). Therefore, po(x) = %
Also Ty (ps(z)) =0, Ta(ps(z)) = 0, Ts(ps(x)) = 1.
= p3(t1) = 0, p3(t2) = 0, p3(ts) = 1

= x — t1, x — ty are the factors of p3(x). Therefore, ps(x) = Le=ti)(@=ts)

(ta—t1)(ts—t2)
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(8.6) Let Us Sum Up: We have observed that the dimension of dual space
of a finite dimensional vector space is the same. In this lesson we have defined
dual basis for the given basis of a finite dimensional vector space and explicitly

computed the dual basis for the given basis of a vector space.

(8.7) Lesson End Exercise

1. Find the dual basis of {(1, 0, 0, 0), (0, 1, 0), (0, 0, 1)} of R3.

2. Let B = {(-1,1,1), (1, =1, 1), (1, 1, =1)} be a basis of R3. Find dual
basis for B.

3. Find the dual basis of {(1, 1, 2), (0, 2, 1), (0, 0, 5)}.

4. Let V' be the vector space of all polynomials over the field R of degree < 1
i.e. V.={a+bzxla, b€ R}. Let Fy, Fy be linear functionals on V', defined as

and

Find the basis of V' of which dual basis is {f1, f2}.

Solution Let {vy, v} = {a1 + asx, by + bax} be the required basis and B* =
{f1, f2} beits dual basis. Then fi(v1) =1, fi(va) =0, fa(vy) =0 and fo(vy) =
1.

Now

1

a
filay + agz) = (a1+a2x)dx:>1:a1+52:>2:2a1+a2

2

folar + agx) = (a1 + agx) de = 0 = 2a; + 2as

J
J
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Solving these equations, we get a; = 2 and ay = —2. Similarily

1
b
fl(b1+bg$) = /(b1+52$)d$:>():bl+§2:>0:2l)1+b2
0

2
fg(bl + bgl‘) = / (bl + ng) der=1= 2b1 + 2b2
0

Solving these equations, we get by = = and by = 1. Therefore, the required

2
basis of V is B = {2 — 2z, 5+ + x}.

(8.8) University Model Questions

1. Let V = {a+ bx + cx?|a, b, c € R} be a vector space of polynomials over R
of degree < 2. Let fi1, fa, f3 be linear functionals on V', defined as

Ao = [ v de, ot = [ v ot = [ ployaa
Prove that {f1, fa, f3} is a basis of V*.
2. Let V(F) be a vector space of dimension n and vy, vy be two different vec-
tors in V', then show that there exists f € V* such that f(vy) # f(va).
(8.9) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.
(i1) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Unit-IIT

Lesson-I1X Linear Transformations on a vector space

9.0 Structure

9.1 Introduction

9.2 Objectives

9.3 Linear Transformations

9.3.1 —9.3.2 Definitions

9.3.3 —9.3.12 Theorems

9.4 FEzamples

9.5 Composition of linear Transformations
9.5.1 Definition

9.5.2 Example

9.5.3 —9.5.5 Theorems

9.6 Linear Algebra

9.6.1 Definition

9.6.2 Theorem

9.7 Fxamples

9.8 Let Us Sum Up

9.9 Lesson end exercise

9.10 University Model Questions
9.11 Suggested Readings

(9.1) Introduction: Analogous to homomorphism in groups and rings, we
can formulate the notion of homomorphism in vector spaces also. These are
usually called linear transformations. In order to define a linear transfor-

mation between two vector spaces, it is necessary to assume both the vector
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spaces over the same field F'.

(9.2) Objectives: (i) students will understand the concept of linear transfor-
mation with lot of examples.

(i) In this lesson the students will understand the algebra of linear transfor-
mations on a vector space.

(9.3) Linear transformations

(9.3.1) Definition: Let V and V' be vector spaces over the field F. Then a
mapping T : V — V' is said to be a linear transformation if

(i) T(x+y) =T(x)+T(y), z,yeV

(1))T(ax) =aT(z), « € F andz € V.

(9.3.2) Definition : Let V' be a vector space over the field F'. Then the linear
transformation T : V' — V is called linear operator on V.

(9.3.3) Theorem : Let V and V' be two vector spaces over the field F.
Then the mapping T : V. — V' is a linear transformation if and only if
T(ax+ By) = aT(x) + T (y),V o, B € F and x,y € V.

Proof Already proved in Lesson 6 Theorem (6.1.1).

(9.3.4) Theorem: Let V and V' be vector spaces over a field F. Then a
mapping O : V. — V' defined as O(x) =0,V = € V is a linear transformation.
Proof Let z,y € V and o € F'. Then azx + Sy € V and

O(ax + By) = 0= a0+ B0 = aO(x) + SO(y). Hence O is a linear transfor-
mation and it is called as zero transformation.

(9.3.5) Theorem: Let V' be a vector space over a field F. Then the mapping
I:V =V defined by I(x) = x,V x € V is a linear transformation (or Linear
operator) on V.

Solution Let x,y € V and o, € F. Then ax + By € V. Now
T(az + By) = oz + By = aT(z) + BT(y).
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Therefore I is a linear operator called identity operator on V.
(9.3.6) Theorem : Let V, V' be vector spaces over a field F and T : V — V'
be a linear transformation. Then the mapping —T : V. — V' defined by
(=T)(z) = —[T(x)]Vz € V is a linear transformation.
Proof We have T : V. — V' is a linear transformation, so T(x) € V' for
reV=-Tx eV
Letx,y eV and o, g € F.
Then (=T)(ax + By) = —[T(ax + By)]
= —[aT(x) + BT (x)]
= —aT(x) = BT(y)
= a(=T(z)) + 5(=T(y))
= o (=T)(x)] + BI(=T)(y)]
= —T' is a linear transformation.
(9.3.7) Theorem: Let T : V(F) — V'(F) be a linear transformation. Then
(i) T(0) = 0" (i) T(—=x) = =T(x)
(1ii) T(x —y) =T (x) = T(y), Y, y € V (iv) T(mx) = mT(z), ¥V m € Z.
Proof (i), (i), (iii) already proved in Theorem 6.2.1.
(iv) We shall prove this by induction on m.
Case I When m > 0, For this, let m = 1, then T(1z) = T(x) = 1T(x). So
the result is true for m = 1.
Now assume the result for m = p, p is a positive integer.
i.e. T(px) = pT(z)
Now T((p+ 1)x) =T (pr + x)
= T(px) + T(x)
= pT(x) +T(x)
=(p+ 1)T(x).
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Therefore, the result is true for m = (p+1). Hence by induction, T (mzx) =
mT(x),Vme N.
Case II When m =0, then T'(0z) = T(0) = 0" = 0'T'(z).
Therefore the result is true for m = 0.
Case III When m < 0, let m = —p, where p is a positive integer.
Therefore T'(mx) = T'(—pzx)

— T(p(~2))

= pT(=x)

= p(=T(z))

= (-p)T(z)

=mT(z)
= T(mz) = mT(z).
Hence the result is true for all m € Z.
(9.3.8) Theorem : Let V and W be vector spaces over the same field F. Let
B = {x1, xa, ..., x,} be a basis of V' and y1, ya, .., Yn be any elements of
W. Then there exists a unique linear transformation T : V. — W such that
T(xi) =y, 1 <i <.

Proof Let x € V' be any element. Then

n

r = E a;T;

i=1
15 the unique linear combination of elements of basis B. Define a rule T : V —
W such that T(a1x1 + asxe + ... 4+ apnZy) = a1y1 + a2yo + . .. + apYn-
Since ay, as, ..., a, are unique, so the rule T is a well defined mapping.
Now, each x; € V' can be expressed as a linear combination of vectors of basis
Biex;=0x+ ...+ 1x; +0z;01 + ... + 0z,
Therefore T'(x;) = 0yy + ... 1y; + ... + Oy,
= T(x;) =y, fori=1,2,..., n.

90



T is linear transformation: Let x, 2’ € V and o, 5 € F.

Then

n

n
T = E a;z; and ¥ = E a;'r; fora;, a; € FYi.

i=1 =1

Now,

T(wx+p2') = T (@ZaxﬁBZala@)

- T (Z oa;)T; + Z(ﬁa/)xz)
A (Z aa; + ﬁaz‘/)%)

= Oé(lz + Baz ) Y
=1

= Y (aa)y + > (Ba)y;
i=1 i=1
= «a Z a;y; + 5 Z ai'yi
i=1 i=1
= aT(i a;r;) + BT(i a;'z;)
i=1 i=1

= aT(z)+ BT (2"
= T(ax+ B2') = oT'(x)+ BT (2').

Hence T is a linear transformation.
T is unique: Let S : V. — W be another linear transformation such that
S(x))=vyi,i=1,2,...,n
Let x = a2y + agxs + ... + apx, be an element of V.
S(x) = S(ayzy + asxs + ... + apzy)
= a1S(z1) + a2S(z2) + ... + ap,S(xy,)
=aiy; + ays + ...+ Qp¥Yn
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=T(z)
= Sx)=T(x),VzxeV
Thus T is a unique linear transformation.

(9.3.9) Theorem: Let V and W be vector spaces over the same field F' and

T:V — W be a linear transformation. Prove that (i) if x1, xa, ..., T, are
linearly dependent over F' then T'(z1), T(x3), ..., T(x,) are also linearly de-
pendent.

(12) if x1, o, ..., T, are such that T(xy), T(xs), ..., T(x,) are linearly inde-
pendent, then x1, xa, ..., x, are also linearly independent.

Proof (i) Since x1, xa, ..., x, are linearly dependent. Therefore, there exists
scalars aq, o, ..., a, not all zero, such that anxy + avxs + ... + apx, =0

= T(onzy + asxs + ... + apx,) = T(0)

= a1 T(z1) + axT(z2) + ... + o, T(z,) = T(0)

= 1T (z1) + aT(x2) + ... + a,T(x,) =0

Hence T(x1), T(x2), ..., T(x,) are linearly dependent in W.

(17) Cosider aqzy + qowo + ... + oz, =0, for ayg, ..., a, € F. Then
T(oixy + agza + ... + apxy,) = T(0)

= T(onzy + asxs + ... + ayx,) = T(0)

= a1 T(v1) + aT(x2) + ... + a,T(x,) =0

= a1 T(z1) + aT(x2) + ... + a,T(x,) =0

=a;=ay=...=a, =0 (because T(z1), T(z2), ..., T(x,) are L.I).

Hence x1, xo, ..., x, are linearly independent.

(9.3.10) Theorem : Let V and W be two vector spaces over a field F.
Then the set L(V, W) of all linear transformations of V' in W forms a vec-
tor space over F under the operations + and scalar multiplication defined as

(I + To)(x) = Th(z) + To(x), Vo eV, Ty, T, € L(V, W) and (aT)(x) =
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aT(x),Yx eV and a € F, T € L(V, W) respectively.

proof Already done in the exercise (6.7) problem number 4 of Lesson-VI.
(9.3.11) Lemma: Let V and V' be finite dimensional vector spaces over a
field F and B = {x1, 2, ..., x,} be a basis of V. Then for any mapping
f: B —= V' there exists a unique linear transformation T : V — V' such that
T(x;) = f(z;),Va, € B,i=1,2,...,n.

Proof Let x € V' be any element. Then

n
xr = E a;T;.
=1

Define a rule T -V — V' by
T(a1x1 + agxo + . .. + apxy) = arf(z1) + aof(x2) + - + anf(xy).
Then clearly, T is a well defined mapping because of the uniqueness of a,s in
the representation of x.
Now we shall show that T is a linear transformation.
For this, let

r = Zaixi, Yy = Zbﬂi

i=1 i=1

and a, B € F. Then

Tax+By) = T|a Z a;x; + 8 Z bixz)
=1 =1

= T Z(aai)xi—kzwbi)xi)

=1

=T Z(aai+ﬂbi)xi)

i=1

n

= Z(Cmi + Bbi) f (2:)

i=1
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n n

= T(az+fy) = Y aaif(x;)+ > Bbif(x)

i=1 i=1

= T(ax+ py) = ol(z)+ BT(y).

Therefore, T is a linear transformation.
Also, T(z;) = T(0x1+...+1ax;+...0x,) = 0f (x1)+... 1f(z;)+...4+0f(x;) =
(i)
= T(x;) = f(=z:), V i.
For the uniqueness,
let S be another linear transformation such that S(xz;) = f(x;), ¥V i.
Then S(x) = S(a1x1 + agrs + ... + apxy,)
=a15(x1) +asS(x2) + ... + a,S(xy)
ar f(x1) + asf(xa) + ... + anf(zy,)

(@121 + agxs + ... + ayzy)

T
T(x)= S(z)=T(x),Vx. ThusT =S.

Hence T is the unique linear transformation.
(9.3.12) Theorem Let V and W be finite dimensional vector spaces over a

field F'. Then the vector space L(V, W) of all linear transformations of V in

W is also finite dimensional and

dim(L(V, W)) = (dim V)(dim W).

Proof Let By = {1, xa, ..., x,} and By = {y1, Yo, ..., Ym} be bases of V
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and W respectively. Then for 1 <i <n, 1 < j <m, define a mapping
y; fi=p
0 difi#p

by the Lemma (9.2.11), T;; is a linear transformation for each i, j.

Claim: B ={T;; : 1 <i <mn,1<j <m} is a basis of L(V, W). For this,

Tij(zp) =

we first show that B is linearly independent. Let cy; be set of m x n scalars,

where 1 <1 < nandl <75 <m such that

> D aTi=0

i=1 j=1

Now x, € V for eachp=1,2, ..., n and O(x,) = 0. Therefore,

(Zzaijﬂj) (@p) = O(zp)

i=1 j=1

ZZaijTij(xp) = 0eW
i=1 j=1

SN wyTyx,) = 0

j=1 i=1
m
> ayy; = 0
j=1

ap1Y1 + Ap2Y2 +...F ApmYm = 0
= Qp1 = Qpp = ... = Qp, = 0, wherel <p < n
iy = O, V’L, j
Hence B s linearly independent.

Now we shall show that B is spanning set for L(V, W). For this, let T €
L(V, W) be any element so that T'(x,) € W. Then

T(xy) = > Bovi-
j=1
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Now cosider

(ZZ@’J‘TM> (zp) = ZZﬁijz‘j(ﬂ?p)

i=1 j=1 i=1 j=1

= Z By
j=1

=Y Y ByTy(r,) = Tl

i=1 j=1

iZZBiszj =T

i=1 j=1

Hence B is a basis of L(V, W) and
dim(L(V, W)) = mn = (dim V) (dim W).

(9.4) Examples

1. Show that the following mappings are linear transformations:

(i) T : V3(R) — Va(R) defined by T'(x,y, z) = (xr —y + 2, 2x)

(1)) T : V(R) — V(R) defined by T'(x + 1y) = = — 1y

where V(R) = {z + |z, y € R and 1 = \/—1}.

Solution (i) Let u = (1, ¥1, 21), v = (xa, Yo, 22) be any elements of V3(R)

and «a, B be any real numbers.
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Then au + v = (axy + Pxa, ayr + Bya, az + Bz) € V3(R). Now,

T(au+ pv) = T(axy+ Bre, ayr + Py, az + Bz)
= (axy + Bre — ayy — Bys + az + Bz, 2021 + 2022)
= ((ax1 —ayr + az1) + (Bra — By2 + B22), 20z + 2Bx2)
= (az —ayr + az, 2az1) + (Bra — By + B2, 2819)
= a(z1 —y1 + 21, 221) + f(@2 — Y2 + 22, 272)
= aT'(z1, y1, 21) + BT (22, ya, 22)
= T(oau+ pv) = oT'(u)+ BT (v)

Hence T is a linear transformation.
(ii) Let u = x1 + wy1 and v = x9 + 1y be any elements of V(R) and «, B be

any real numbers. Then

T(au+ Bv) = T(a(z+ wn) + Bz + 1ys))
= T((azy + Bxa) + t(ay: + Bys))
= (ax; + Bry) — vlay + Biys)
= oz —wy) + B(ze — )
= aT(z1 + up) + BT (x2 + o)

= T(au+pv) = aT(u)+ BT (v)

Hence T is a linear transformation.

2. Show that the following mappings are not linear transformations:
(1) T :R> — R? | defined by T(x, y, z) = (|y|, 0)

(it)T : R? — R3 defined by T'(z, y) = (x + 1, 2y, © + y)

(iii) T : R* — R defined by T(x, y) = xy.

Solution (i) Let u = (x1, y1, z1) and v = (x9, Y2, 22) be any elements of R3.
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Then u+v = (21 + T, Y1 + yo21 + 22) € R3.

Now T(u+v) =T(x1 + 22, 1 + Y2, 21 + 22) = (|y1 + y2[, 0) and

T(u) +T(v) =T(x1, y1, 21) + T(22, Y2, 22)

= (lyal, 0) + (2], 0) = (lya| + [w2], 0) Therefore, we have T'(u+v) # T'(u) +
T(v).

(ii) Let u = (z1, y1) and v = (x3, y2) be any elements of R?.

Then T'(u+v) = T(x1 + 22, 11 +y2) = (x1 + 22+ 1, 2(11 +y2), 1 + 22+ y1 +

and T'(u) + T(v) = T(x1, y1) + T'(x2, y2)
= (141, 2y1, x1 + 1) + (22 + 1, 292, 22 + y2)
=@ +2o+ 142,201 +v2), t1+ T2+ Y1 +Y2)eennn (i1).
Now from (i) and (i1) we have T (u+ v) # T(u) + T'(v).
Hence T is not a linear transformation.
(iii) Let u = (x1, y1) and v = (z2, y2) be any elements of R?.
Then T'(u +v) = T(x1 + 22, y1 + y2)
= (21 +22)(y1 + ¥2)
= 21y1 + T1Y2 + Toyh + Toya......(7)
Similarily T'(u) + T'(v) = T(x1, y1) + T(x2, y2)
= XT1Y1 + Talo....... (74)
Then from (i) and (ii) we get T(u +v) # T'(u) + T'(v).
Hence T is not a linear transformation.
3. Let V and V' be vector spaces over the field F'. Show that the mapping
T :V — V'is a linear transformation if and only if T(ax+y) = T (x)+T(y).
Solution First, suppose that T : V — V' is a linear transformation. Then it
is obvious that T(ax +y) = T(ax) + T(y) = oT'(x) + T(y), forall xz,y € V

and o € F'.
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Conversely, suppose that T'(ax +vy) = oT'(x) + T'(y). Now take a = 1, then
we get T(1lx +y) = 1T(z) + T(y) = T(z) + T(y)

=T(x+y) =T(x)+T(y)....... (1).

Also take y=0€ V. Then T(ax +0) = T(ax) = aT(x)

= T(az) = aT(2)........ (2).

Therefore from (1) and (2) we see that T is a linear transformation.

(9.5) Composition of linear transformations

(9.5.1) Definition: Let U, V, W be vector spaces over the field F and T :
U—V,§:V — W be linear transformations. Then the composite mapping
ST :U — W 1is defined as

SoT' (z) = (ST)(z) = S(T(x)), Va € U.

(9.5.2) Example: Let V' be vector space of polynomials over reals. Define

linear operators D and T as

D7) = D ana 1s(0) = | e

Show that DT = I and T'D # I, where I is the identity operator.
Solution Let f(t) = ag + ait + ast* + ..., where a.s are real numbers.

Then

(DT)(f(t)) = DIT(f(#))]

_ D:/Olf(t)dt]

1
— D /(a0+a1t+a2t2+...)dt}
LJ O

[ 2 '
= D t — —+...
(ao +a12+a23+ )0

= a0+a1t+a2t2+a3t3+...

= f(t)
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Therefore DT (f(t)) = I(f(t))
= DT =1.

Now

(TD)(f(t)) = TID(f(t))]
= Tla, + 2ast + 3ast® + .. ]
= /t(al + a9t + 3ast? +...) dt
0
= [alt + ast? + a3t3 + .. Lt)

= ayt + ast® + azt® + ... # f(t)

Therefore (T'D)(f(t)) # f(¢)
= TD # 1. Hence DT #TD.

(9.5.3) Theorem Let U, V, W be vector spaces over the same field F and
T :U =V and Ty : V — W be linear transformations. Then 15T, : U — W

s a linear transformation.

Proof Since Ty : U =V and 15 : V. — W are linear transformations so the
composite mapping ToT) : U — W is defined by (ToT)(x) = T2(Ty(z)), ¥V x €
U.

Letx,y € U and o, 5 € F. Then

(TyTh)(ax + By) = TolTi(ox + By)]
= TylaTi(z) + BTi(y)]
= Ty(aTi(z)) + To(BTi(y))
= aTy(T\(x)) + BTa(Ti(y))
= o(TyT))(z) + B(TLTY)(y).

Hence ToT, : U — W is a linear transformation.

(9.5.4) Theorem Let U, V, W be vector spaces over the same field F and
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T, :U =V and Ty : U — V be linear transformations. Also let S :V — W
and Sy : V' — be linear transformations. Then
()S\(Ty +Ty) = $iTs + ST
(i0)(S1 + So)Th = SiTy + ST
(ii6)a( S Ty) = (aS1)Ty = Sy(aTh) for a € F.
Proof(i) For each v € U, we have
[SU(Ty+To))(x) = Si[(Th+ T2)(x)]
= S[Ti(x) + Ta(x)]
= Si(Ti(x)) + Si(Ta(2))
= (517h)(2) + (5112)(x)
= [SiT1 + SiT5)(x)
Hence Sy(T, +Ty) = SiT: + SiTh.
(ii) For each x € U, we have
[(S1+ S2)Th](x) = (S1+ 52)(Th(w)) = Si(Th(x)) + S2(Th(x))
= (S170)(x) + (S211)(x) = (S1T1 + SoT1)(x)
Hence (Si + )Ty = SiTy + SoTh.

(#ii) For all x € U, we have

[a(SiT)|(z) = a(SiTh)(z) = aSi(Ti(z))
(
Also[S1(aT))|(z) = Si[aTi(x)]

From (1) and (2), we get a(S1T7) = (aS1)T7 = S1(aTy).

(9.5.5) Theorem: Let R, S, T be three linear operators on a vector space
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V(F) and O and I be the zero and identity operators on V. Then (i)RO =
OR=0 (ii)RI=1R=R (iti)R(S+T)= RS+ ST

(iv)(R+S)T = RT+ ST (v)R(ST) = (RS)T (vi)k(RS) = (kR)S = R(kS).
Proof Let x € V. Then (RO)(z) = R[O(z)] = R(0) =0 = O(z)

= RO = 0.

Similarly (OR)(z) = O(R(x)) = O(y) = 0 = O(x)

= OR = O, where R(x) =

(@) (RI)(z) = R(I(2)) = R
= RI =R and (IR)(z
= IR =R.

(@i)[R(S + T)l(x) = R[(S + T)(x)] = R[S(z) + T(x)]
— R(S(2)) + R(T(=))

= (RS) (z) + (RT)(x)

()
I(R(z)) = I(y) = y = R(x)

= R(S+T) = RS+ RT.
(i) [R(ST)](x) = R[(ST)(x)] = R[S(T(x))]

= [RS][T(x)]

= [(RS)T](x)

= R(ST) = (RS)T

v)[R(RS)](x) = k(RS)(2) = kR(S(x))
= (kR)(5(x)) = [(kR)S]()
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= k(RS) = (kR)S and

[R(ES)|(z) = R((kS)(x))
= R(kS(z))
= KkR(S(x))
= K[R(S5(2))]
= [k(R9)](x)

Hence k(RS) = (kR)S = R(kS).

(9.6) Linear Algebra

(9.6.1) Definition: Let V' be a vector space over the field F. Then V(F)
is said to be an algebra over F if the following properties under the binary
operation mutiplication are satisfied:

(i) For all x,y, z € V, (zy)z = z(yz)

(i1) For allx,y, z € V, x(y+ 2) = zy+ 2z and (x + y)z = xz + yz

(i1i) For allx,y € V, a € F, a(zy) = (ax)y = z(ay).

Note:(1) If zy = yz, ¥V x,y € V, then V is a commutative algebra.(2)
If there exists 1 € V' such that lx = 1 = x for x € V', then V(F) is called
linear algebra with unity.

(9.6.2) Theorem Let V' be a vector space over a field F'. Then L(V, V), the
set of linear operators on V is an algebra with unity.

Proof We have already proved in Lesson-VI problem 4 of exercise (6.7) that
L(V, V) is a vector space and the rest properties of algebra follow from the
theorems (9.5.4 — 9.5.5).

(9.7) Examples

1. Let Ty : R3 — R? and T, : R? — R? be two linear transformations defined

as

103



Ti(x,y, z) = 3z, y + 2); To(z, y, 2) = (22 — 3z, y). Compute Ty + Ty, 4T; —
5Ty, T1 Ty, TYT if exist.
Solution (77 + T3)(z, y, 2) = Ti(z, y, 2) + Ta(z, y, 2)
=3z, y+2) + 2z — 3z, y)
= (bx — 3z, 2y + 2)
= (Th +T2)(x, y, z) = (bx — 3z, 2y + 2).
Now, (4Ty — 5T3)(x, y, z) = 4T\ (x, y, z) — 5Ts(x, y, 2)
=43z, y + z) — 5(2x — 3z, y)
= (122 — 10z + 15z, 4y + 4z — by)
= (2x 4 15z, 4z — y)
= (471 — 5Th)(x, y, z) = (2x + 15z, 4z — y).
Here T1Ty, T5T, can not be defined.
2. Let Ty and Ty be linear operators on R?* defined by Ty(z, y) = (y, x) and
Ty(z, y) = (z, 0).
Compute Ty + Ty, ToTy, T Ty, Ti2, TH>.
Solution (71 + Ty)(x, y) = Ti(x, y) + To(z, y)
=, 2) +(2,0) = (y + z, z)
= (T + 1) (x, y) = (y+z, x).
(T\T2)(z, y) = Th(To(w, y)) = Ta(z, 0) = (z, 2)
= T1Ty(z, y) = (z, x).
Similarly, (ToTh)(x, y) = To(Ti(z, y)) = Ta(y, ) = (y, 0)
= (IoTh)(z, y) = (y, 0).
Now, Ti*(z, y) = Ti(Tx(z, y)) = T1(y, =) = (z, y)
=T’=1
Also, Ty (z, y) = To(Ta(z, y)) = Ta(z, 0) = (x, 0)
= Ty*(x, y) = (z, 0).
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3. Find a linear transformation which transforms
(3, =1, =2), (1, 1, 0), (=2, 0, 2) € R?

to twice the elementary vectors i.e. 2e;, 2es, 2es in R3, where ey, eq, e3 are
elementary vectors.
Solution Let T : R®* — R3 be a linear transformation such that
T(3, —1, =2) =21, T'(1, 1, 0) = 2eq, T(—2, 0, 2) = 2e3.
First, we show that B = {(3, —1, =2), (1, 1, 0), (=2, 0, 2)} is a basis of
V. For this, it is enough to show that B is linearly independent. Consider
a(3, =1, =2) +b(1, 1, 0) + ¢(-2, 0, 2) = (0, 0, 0)
= (3a+b—2c, —a+b, —2a + 2¢) = (0, 0, 0)
=3a+b—2c=0
—a+b=0
—2a+2c=0 _
3 1 2| |a 0
-1 1 0 bl = |0
-2 0 2 c 0

3 1 =2
=|—-1 1 0|=4#0. Hencea =b=c =0 = B is linearly independent

-2 0 2
and thus a basis of R3.

Now, let (z,y, z) be any element of R3. Then (x,y, z) = a(3, =1, =2) +
B(1,1,0) +~(=2,0, 2)

=3a+p—-2yv==x

—atf=y

— 200+ 2y = z. Solving these equations we get o« = 3(x —y +2), =y + «
= 3= %(m+y+z) and v = %(x—y—i-QZ)
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The  required linear transformation is given by T(z,y, 2) =
T(3(z—y+2)3, -1, =2)+ 3= +y+2)(1, 1,0+ 5(z —y +22)(-2, 0, 2))
=@ —y+2)2 +3(x+y+2)2e+3(x—y+22)2e;
=@—-y+z,v4+y+zr—y+22)

=T(r,y,2)=(r—y+z,c+y+2z x—y+22).

4. Show that the following mappings are linear transformations:

(i)T : R® — R defined by T'(x, y, z) = x + 3y — 42

(ii)T : R? — R? defined by T'(z, y) = (0, —x).

Solution (i) Let (x1, y1, 21), (T2, Yo, 22) € R?® and o, 8 € F. Then
a(zy, y1, 21) + B(x2, Y2, 22) = (w1 + Ba, ayr + Biya, a2y + Bz2) € RS,

Now T'(a(x1, y1, 21) + B(x2, Y2, 22)) = T(axy + B, ayr + By2, az1 + Bza)

= axy + fry + 3(ays + Bya) — 4(az + B2o)

= a(z1 + 3y1 — 421) + B(x2 + 3y2 — 420)

= oT'(z1, y1, 21) + BT (22, Yo, 22).

Hence T s a linear transformation.

(9.8) Let Us Sum Up: Basically linear algebra began with the study of linear
equations. In order to define linear algebra we have defined linear transforma-
tions and linear operators on vector space, their composition. Then we have
illustrated them with various examples. At the end with the help of theorems
we could able to define linear algebra i.e. algebra of linear operators. The set

which 1s having both the structures vector space and ring.

(9.9) Lesson End Exercise

1. Let T : R — R? defined by T(x) = (2x, 3x). Show that T is a linear
transformation.

2. Let V(R) be a vector space of integrable functions on R. Prove that T :
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V — R defined by

d
T(f):/ f(z)dz;ec, d € R

s a linear functional.
3. Show that the following mappings are not linear transformations:
(i)T : R? — R defined by T(x, y) = |2x — 3y|
(ii)T : V(C) = V(R) defined by T(x + 1y) = (23 + y?)3.
(iii)T : C — C defined by T(x +1y) =,V z, y € R, where 1 = v/—1.
4. Find a linear transformation T : R* — R? such that T(1, 2) = (3, 4) and
7(0, 1) = (0, 0).
Hint (First, check that {(1, 2), (0, 1)} forms a basis for R* and find the map-
ping).
5. Find a linear transformation T : R* — R3 such that T(1, 2) = (3, —1, 5)
and T(0, 1) = (2, 1, —1).
6. Find a linear transformation T : R? — R? such that T(2, 3) = (1, 2) and
T(3,2) = (2, 3).
7. Let T : R® — R? be a linear transformation. Prove that (T*—1)(T—-3I) = O.
8. LetT :R3 = R? and S : R?2 — R3 be two linear transformations defined by
T(x,y, z) = (xr — 3y — 2z, y —4z) and S(x, y) = 2z, 4z — y, 2o + 3y). Find
TS, ST. Is product commutative?
9. Let Th : R® — R? and T, : R? — R3 be two linear transformations
defined by Ti(x,y, z) = Bz, y + 2), Ta(z, y, z) = (2z — 3z, y). Compute
Ty + Ty, 5Ty, ATy — 5T, TyTy and TyT;.
10. Let T : R?* — R? be LT defined by T(z,y) = (z + vy, 2x). Let
f(t)=t>—2t+3. Find f(T)(z, y).
Hint. f(T)(z, y) = (T* — 2T + 31)(z, y)

=Tz, y) — 2T (x, y) + 3I(z, y)
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=T(T(z, y)) = 2(x +y, 2z) + 3(z, y))
=T(r+vy, 2x) + (—2x —y, —2x) + (3z, 3y)

= Bz 4y, 2v +2y) + (—2x —y, —2z) + (3z, 3y)
= (4, 5y) = f(T)(z, y) = (4x, 5y).

(9.10) University Model Questions

1. Define linear transformation. Show that the mapping T : R® — R3 defined
by T(x, y, z) = (y, —x, —2) is a linear transformation.

2. Define linear transformation. For a linear transformation T show that
(1) T(0) =0 and (i))T(x —y) =T(x) — T(y).

3. Let V(F) be a vector space of all m x n matrices over a field F' and let P
and ) be two square matrices of orders m X m and n X n respectively. Show
that the mapping T : V. — V defined as T(A) = PAQ,VA € V is a linear
transformation.

4. Define linear transformation. Show that the mapping T : R?® — R3 defined
by T(z, y, 2) = (y, —x + 1, —z) is not a linear transformation.

(9.11) Suggested Readings:(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-X Matrix representation of Linear Transformation

10.0 Structure

10.1 Introduction

10.2 Objectives

10.3 Matrix representation of a linear transformation
10.3.1 Definition

10.3.2 Theorem

10.4 Ezamples

10.5 Let Us Sum Up

10.6 Lesson end exercise

10.7  Unaversity Model Questions
10.8 Suggested Readings

(10.1) Introduction: In this lesson we establish relationship between linear
transformations and matrices. Then we translate the properties of linear trans-
formations to the corresponding properties of the matrices and vice-versa.
(10.2) Objective: Students will get the feeling about the operations on ma-
trices with the help of the correspondence between linear transformations and
matrices.

(10.3) Matrix representation of a linear transformation

(10.3.1) Definition: An m x n matriz over a field F is an array of an mn

elements of F' of the form

aiq a12 Ce Q1n
21 A929 ... QA9p
Am1 Am2 ... Qmn

(10.3.2) Theorem: Let V be an n-dimensional vector space over the field
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F and W an m-dimensional vector space over the field F. Let By =

{x1, ®o, ..., T} and By = {y1, y2, ..., Ym} be bases for V and W respec-

tively. Then for each linear transformation T

matriz with entries in F and vice-a-versa.

V. — W, there is an m X n

Proof First, we suppose that T : V — W s a linear transformation. Then

T(xl) = any t+any2+ ...
T(l’2) = a12Y1 + Q22¥Y2 + ...

T('x?)) = Qai3Y1 + G23Ya + ...

T(xn) = Qai1pl1 + a2nY2 + ..

Am1Ym

Am2Ym

Am3Ym

Therefore, the matriz corresponding to T is given by

a1 a1z

21 Q22
m(T) =

Am1  Am2

Q1n

Q2n,

amn

Conversely, suppose that A = [a;;]mxn be the given matriz and T be the linear

transformation determined by the mn scalars a;;.
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Now, let x € V. Then x = cyx1 + aoxo + ... + @y, oy € F'Vi. Therefore

Tx) = T (Zal:m)

j=1 \i=1
(10.4) Examples

1. Let T be a linear operator on R? defined by

(i) Find the matriz of T relative to the basis B = {(1, 1), (—1, 0)}.
(ii) Also, verify the linear transformation corresponding to the matriz m(T).

Solution (i) We have a linear operator T on V' given by
T(x, y) = (4o — 2y, 2z +y).

So, T((1,1)) = (4—2,2+1)
=(2,3)

=3(1, ) +1(=1,0)
= T(1,1) =3(1, 1) +1(-1, 0)

Similarly T( ) (—4, —2)
—1

, 0) Therefore the matriz corresponding to the operator

T is given by m(T [
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—2

3
(ii) Let T be the operator corresponding to the matriz and (z, y) €

1 2
R%. Then (z, y) = a1(1, 1) + az(—1, 0)

= (1 — ag, 1)
:>061:y, Oy =Y — T

Now ) )
T(x,y)=T (Z aiei> = Z%T(ez)
=1 i=1
2 2
T(z,y) = ZO‘Z Z aji€j = Z(Z ajicy)e;
i=1 j=1 j=1 i=1
2 2
T (Z aiei> = Z (Z aﬂoQ) ej hereoy =y, s =y—x
i=1 j=1 \i=1
So,

2
T(z,y) = Z aj1on + ajps)e;
1

Zallal + appas)er + (ag10q + agos)es
By —2(y —2))(1, 1) + (y + 2(y — 2))(=1, 0)
= (y+2x)(1, 1)+ By — 2z)(—1, 0)
(y + 2z — 3y + 2z, y + 2x)
(4dx — 2y, y + 2x)
(

=T(z,y) = (do—2y y+22)

Hence verified.

2. Find the matriz representation of T : R? — R? defined as T(z, y)
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(3x — 4y, x + By) with respect to the basis B = {(1, 0), (0, 1)}.
Solution We have a linear operator T on V' given by T'(z, y) = (3x — 4y, x +
5y). So, T'(1,0) = (3, 1)

= a1, 0)+ 5(0, 1)

= (o, B)
:>(3> 1):(aa B)
=a=3 =1

T(1,0) =3(1, 0)+ 1(0, 1).

Similarly T'(0, 1) = (=4, 5)

= —4(1, 0) +5(0, 1).

Therefore the matriz corresponding to the linear operator T is given by m(T) =
3 —4

1 5
3. Let V.=W = F,[z] be the vector space of all polynomials of degree < n.

Define a linear transformation T : V- — W by T(f) = f'. Choose the basis
{x1, To, w3, ...} is a basis of V (and W ). Then T(1) =0, T(z) =1, T(2?) =

2z, ..., T(z") = nz" L.
T(1)=0=0140x+ ...+ 02"
T(z)=1=1+0z+0z*+ ...+ 0z"
T(z*) =2z =01+ 2z + 02® + ... + 02"

T(z") =na" ' =0140x+...+nz" "+ 02"

Therefore, the matriz corresponding to T is given by

010 ...00

002 ...00
m(T) =
000 n 0
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4. Let V. = R and let T : V — V be the linear transformation defined
by T(z,y, z) = (2z, 4y, 5z). Find the matrixz of T with respect to the basis

{(%7 07 0)7 (07 %7 0)7 (07 07 %1)} Ofv
Solution We have the given linear transformation T'(x, y, z) = (2x, 4y, 5z).

So,

T200 = 400—2200%—0010%—0001
3a ) - 37 ) - 37 ) 727 ) 74
1 2 1 1
<O, 2,0) (0, 2, 0) 0(3,0, 0) + (O, 2,0) +O(0, 0, 4)
1 ) 2 1 1
T — = —_ = — — — .
(o, 0, 4> (0, 0, 4) 0(3,0, 0)+o(0, 2,0)+5<o, 0, 4)

Therefore the matrix corresponding to T is given by

2.0 0

m(T)=10 4 0
005

1 2 3

5. Let V=R3 and let A= |3 1 —5| be the matriz of T € L(V, V) with

0 0 1
respect to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Find the matriz of T with

respect to the basis {(1, 1, 0), (0, 1, 0), (0, 1, 1)}.

Solution Let (z, y, z) € V be any element and T € L(V, V). Then (z, y, z) =
aie; + asey + ages, where oy = x, ap =Y, g = 2,

e1=(1,0,0), e =(0,1,0, e5 = (0,0, 1).

Now the linear transformation corresponding to A w.r.t. the basis {ey, es, €3}

1 2 3 T T+ 2y + 32
is giwen by T(z, y, 2) = |3 1 —=5| |y| = [3z+y—5z
0 0 1 z z
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=T(x,y,2)=(r+2y+32,3c+y—5z, 2) .
To find the matriz of T w.r.t. the basis {(1, 1, 0), (0, 1, 0), (0, 1, 1)}, we have
T(1,1,0) = (3,4, 0) = a(l, 1, 0) + B(0, 1, 0) +~(0, 1, 1)

(a,a+B+7,7) = (3,4,0)
a=37=0,=1
= T(1,1,0) = 3(1, 1, 0) + 1(0, 1, 0) + 0(0, 1, 1).......(3)
T(0, 1, 0) = a(1, 1, 0) + B(0, 1, 0) + (0, 1, 1)
(2,1,0) = (o, a+ B+, 7)
a=2,v=0,0=-1
7(0, 1, 0) = 2(1, 1, 0) — 1(0, 1, 0) + 0(0, 1, 1).........(1)
Also T'(0, 1, 1) = «(1, 1, 0) + 8(0, 1, 0) + ~(0, 1, 1)
(5, =4, 1) =(a,a+F+7,7)
a=5~v=1 =-5

= T(0,1,1) =5(1, 1, 0) = 5(0, 1, 0) + 1(0, 1, 1).......(éi7)

From equations (i), (i1), and (iii) we get the matriz corresponding to T as

3 2 5
m(T)= {1 -1 -5
0 0 1

(10.5) Let Us Sum Up: Matriz is a vector and linear transformation is a
mapping. In this lesson we got the result there is one to one correspondence
between set of linear transformations on finite dimensional vector spaces and
the set of matrices. One can easily understand this correspondence through

various examples done in this lesson and operations on matrices with the help
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of operations on linear transformation.

(10.6) Lesson End Exercise

1. Let T be a linear operator on R? defined by T'(x, y, 2) = (2y+z, v—4y, 3x).
Find the matriz of T with respect to basis {(1, 1, 1), (1, 1, 0), (1, 0, 0)} and
verify it with the linear transformation.

2. Find the matriz representation of T : R?> — R? defined as T(z,y) =
(3x — 4y, x + By) with respect to the basis B = {(1, 0), (0, 1)}.

. Find the linear operator T on R? with respect to
4

basis {(1, 0), (1, 1)} corresponding to the given matriz.

3. Given the matrix

Wi NI

4. Let T be a linear operator on R® defined by T(z, vy, 2) = (2x — 3y +
4z, bx — y + 2z, 4x + Ty). Find the matriz of T with respect to basis
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

3 3 3
Answers (Z)T(:L‘, Y, Z):(y+2’7$—f% —x—y) (“) —6 —6 -2
6 5 -1
2 -3 4
.3 4 . Tz4+23y  2z+10y
(i) - (iv) T(x, y) = (524, 2E2) (v) |5 —1 2|.
4 7 0
(10.7) Model University Questions
1. If matriz of linear operator T on R3 with respect to basis

0 1 1
{(1,0,0), (0,1,0),(0,0,1)} is | 1 0 —1|. Then what is the matrix
-1 -1 0
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of T with respect to basis {(0, 1, —1), (1, —1, 1), (=1, 1, 0)}.

2. If the matriz of linear operator T on R3 with respect to the stan-
1 1 -1

drad basis is |—1 1 1 |. Find the matrix corresponding to the basis
1 -1 1

{(1,2,2),(1,1,2), (1,2, 1)}

(10.8) Suggested Readings:(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(i) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.

(#ii) Singh, S. and Zameerudin, Q.,Modern Algebra, Vikas Publishing House

Put.Ltd
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Lesson-XI Kernel and Range of Linear Transformation

11.0 Structure

11.1 Introduction

11.2 Objectives

11.3 Kernel and Range a linear transformation
11.3.1 — 11.3.2 Definitions

11.3.3 Theorem

11.4  Rank and Nullity of linear transformation
11.4.1 Definition

11.4.2 —11.4.4 Theorems

11.5 Exzamples

11.6 Let Us Sum Up

11.7 Lesson end exercise

11.8 Model Questions

11.9 Suggested Readings

(11.1) Introduction: If V and W are vector spaces over the same field F
andT : V — W is a linear transformation. Then we look into the subspaces in
V and V' and they turn out be in the form of kernel and image of T which we
explain in detail in this lesson. These two concepts are analogus to the kernel
and image of group homomorphism or ring homomorphism

(11.2) Objective : The properties of linear transformation become easy to
understand through kernel and tmage of linear transformation.

(11.3) Kernel and Range of linear transformation

(11.3.1) Definition : Let V, W be vector spaces over a field F and T : V —
W be a linear transformation. Then the subset {x € V|T(z) = 0'} of V is said
to be a kernel of T. It is denoted by Ker(T) and Ker(T) = {x € V|T(x) =
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0'}. It is also called as Null space of T'.
(11.3.2) Definition:( Range of linear transformation): Let V, W be vec-
tor spaces over a field F' and T :' V. — W be a linear transformation. Then

the image of set V under T is called Range of T'i.e.
Range(T) = {w € W|w =T (v) for some v € V}.

(11.3.3) Theorem : Let V, W be vector spaces over a field F andT : V — W
be a linear transformation. Then Ker(T) and Range(T') are subspaces of V' and
W respectively.

Proof Since T(0) =0". So 0 € Ker(T) = Ker(T) # ¢.

Now, let x, y € Ker(T) and o, f € F.

Then T(ax + By) = aT'(x) + T (y) = a0’ + S0 =0

= az + Py € Ker(T).

Therefore, Ker(T) is a subspace of V.

Similarly Range(T) # ¢ because (T'(0) = 0').

Let ',y € W and o, p € F. Then there exists x, y € V such that ' = T'(x)
and y' =T(y).

Now ax’ + By’ = oT(x) + BT (y) = T(ax + By)

= ax’ + By’ € Range(T). Hence Range(T) is a subspace of W.

(11.4) Rank and Nullity of linear transformation

(11.4.1) Definition: Let V, W be vector spaces over a field F andT : V. — W
be a linear transformation. Then the dimension of the Range(T) is called the
rank of T and the dimension of Ker(T) is called the Nullity of T.
(11.4.2) Theorem (Rank-Nullity Theorem): Let V, W be vector spaces
over a field F and T : V. — W be a linear transformation. Suppose the

dimension of V' is n, then
dim V' = Rank(T) + Nullity(T).
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Proof Let Nullity(T) = m. Then m < n because Ker(T) is a subspace of
V. Now, suppuse that B = {x1, x9, ..., Ty} is a basis of Ker(T). Then B
1s a linearly independent subset of V. Therefore, by Basis-Extension theorem
B can be extended to a basis of V. Let By = {x1, T2, ..., Tm, Tmi1, Tn} be a
basis of V. Cosider the set By = {T(zm+1), T(Tm2), ..., T(xn)}.

Claim that By is a basis of Im(T).

For this, Consider am1T (Tmi1) + ama2T (Tma2) + - + apnT(x,) =0
T(Ams1Tms1 + AmaoTmis + - .. + apxy) =0

A1 Tms1 + GmaoTmas + ... + apzy, € Ker(T)

= Om+1Tm+1 + Am42Tm42 + .o+ ApTp = Q1T + A2T2 + ... + ATy

= a1 + aoTo + ... + T — Qi 1Timai1 — GmaoTmis — - + @pxy =0
= A =0 =...=0p=0py] =... =0, =0
:>am+1:...:an:0.

Hence By is linearly independent.

Now, let y € Im(T). Then there exists x € V such that T(z) =y
= T(a1x1 + asxo + ... + Ty + ... + apx,) =y

= a1T(x1) + a2l (x2) + ... + ap/T () + a1 T (Tmer) + .. 0, T(x,) =y
=0+ a1 T(Tme1) + ... a,T(z,) =
= Y= ni1 T (Tmi1) + ... 0T ().
Therefore y € L(By) = V = L(By). Hence By is a basis of Im(T). This
shows that Rank(T) = dim(Im(T)) =n —m = dimV — dim(Ker(T))

= dimV = Nullity(T) + Rank(T).

(11.4.3) Theorem : Let V, W be vector spaces over a field F andT : V — W

Y

be a linear transformation. Then T is one-one if and only if Ker(T) = 0.

Proof First, we suppose that T is one-one mapping.

Now, let x € Ker(T). Then T(x) =0’
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= T(x) =T(0)

=2 =0. Hence Ker(T) = {0}.
Conversely, Suppose that Ker(T) = {0}. To show that T is one-one, cosider
T(x1) = T(x9)

= T(x1) —T(z2) =0

= T(r1 —x9) =0

= 11 — 29 € Ker(T). But Ker(T) = {0}

=21 —29=0

= 11 = 9. Hence T 1is one-one.

(11.4.4) Theorem (First fundamental theorem of isomorphism): Let
V, W be vector spaces over a field F and T : V. — W be an onto linear trans-
formation. Then V/Ker(T) = W.
Proof Define a rule T : V/K — W by =

TR=T@ vaey Where K = Ker(T).
I T is well defined mapping: Let x1 + K = 2o + K

=r1—T9 €K

=T(r1 —x) =0

= T(x1) = T(z2)

= T(x1+ K) = T(29 + K)

= T is a well-defined map.

II T is one-one:

Ker(T)={z+ K|T(x+k) =0}

={z+ K|T(x) =0}

={z+ K|z € K}

- (K)

Ker(T) ={K} =T is one-one.

III T is linear transformation: Let v + K, y + K € V/W and o, B € F.
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Then T(a(z + K) + By + K)) = T((ox + By) + K))

= T(ax + By)

— aT(x) + AT(y)

=al(z+ K)+ BT(y + K)

= T(a(r+K)+ By +K))=aTl(x+ K)+ BT (y + K).

IV T is Onto Since T is onto, so T is clearly onto.Hence V/K = W.
(11.5) Examples

1. Show that T : R? — R? defined by T'(x, y, z) = (x —y, v+ 2y, y) is a linear
transformation. Determine ()T (e1), T'(e2) and (i) Ker(T).

Solution Here T7'(0,0,0) = (0 — 0,0 + 2.0,0) = (0,0,0). Now, let
(z1, y1, 21), (T2, Y2, 22) E R and o, B € F. Then

T(a(xy, y1, 21) + B(x2, Yo, 22)) = T(awy + By, ayy + Py, azr + Bz2)
= (amy + Bry — ayr — By2, axy + Bra + 2(ay + Bya), ayi + Bya)

= (a(zy —y1) + B(z2 — y2), oy + 2y1) + B2 + 2u2), w1 + By2)

= (a(zr — 1), @y + 2y1), ayr) + (B(x2 — y2), B2 + 2u2), By2)

= a((@1— 1), (@1 +2u1), 1) + B (22 — 2), (22 + 242), 12)

= oT(x1, y1, z1) + BT (22, Y2, 22)

= T is a linear transformation.

Now, T(e;) =T(1,0,0) = (1, 1,0) and T(0, 1, 0) = (-1, 2, 1).
Kernel of T is given by

Ker(T) ={(z, y, 2)|T(z, y, z) = (0, 0, 0)}

={(z, y, )|z —y, z+2y,y) = (0,0, 0)}

={(z,y, 2)lr —y=0,2+2y =0,y =0}

={(z, y, 2)lr =y =0}

={(0, 0, 2)|z € F}

= Ker(T) ={(0, 0, 2)|z € F}.

Z
z
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2. Let V' be a finite dimensional vector space over a field F' and T be linear
operator on V. Then T s one-one if and only if T is onto.

Solution Suppose that T is one-one.

Then Ker(T) = {0} = Nullity(T) = 0. Therefore, by Rank-Nullity theorem,
we have dim V' = Nullity(T) + Rank(T) = 0 + Rank(T)

= V = Range(T)

= V = Range(T) = T is onto.

Conversely, suppose that T is onto. Then V. = Range(T) = dimV =
dim Range(T) = Rank(T). Now by Rank-Nullity theorem, we have dimV =
Nullity(T) + Rank(T)

= dim V' = Nullity(T) + dim V/

= Nullity(T) =0

= Ker(T) ={0} = T is one-one.

3. For each of the following transformations T : V. — W. Find a basis and
dimension of its (i)Range space (ii) Null space. Also verify the Rank-Nullity
Theorem

(a) T :R3 — R3 defined by T(x, y, 2) = (x+2y — 2,y + 2z, x +y — 22)

(b)T : R? — R3 be defined by T(z, y) = (x —y, y — x, x)

()T : R? — R? be defined by T(x, y) = (v +y, x — y)

Solution (a) Since {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis of R® so

{T(1, 0, 0), T(0, 1, 0), T(0, 0, )} = {(1, 0, 1), (2, 1, 1), (=1, 1, —2)}
generates Range(T). Consider (1,0, 1) + (2,1, 1) + v(—1,1, =2) =

(0, 0, 0)

(a+2ﬁ_775+7aa+5_27):<0a 07 0)
=a+20—7=0
B+v=0
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a+pB—-2y=0

12 -1 |a 0

01 1| 1(8]=]0

11 2| |~ 0
12 -1

Now |0 1 1|=0
1 1 =2
= {(1,0,1), (2,1, 1), (=1, 1, =2)} is L.D.
1 2 -1
Let A= 10 1 1 operate Ry — Ry
1 1 =2
1 2 -1
~ 10 1 1 operate Rz + Ry
0 -1 -1
-12 —1
~ 10 1 1

00 O
This shows that {(1, 2, —1), (0, 1, 1)} is a basis of Range(T)

= Rank(T) = 2.
Now, let (x,y, z) € Ker(T) = T(z, y, z) = (0, 0, 0)
= (x4+2y—2,y+2z,x+y—22)=(0,0,0)

x+2y—2=0

y+z=0

r+y—22=0

=>zx=3,y=—-1,2z=1

Therefore Ker(T) is generated by {(3, —1, 1)} = {(3, =1, 1)} is a basis of
Ker(T). Hence Nullity(T) = 1 and dim(R3) = 1+2 = Nullity(T)+ Rank(T)
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which shows that Rank-Nullity theorem is verified.

(b) (Do yourself)

(¢) (Do yourself)

(11.6) Let Us Sum Up :This lesson deals with the most important theorem
of Sylvester Rank-Nullity theorem. We have defined the kernel and range
of linear transformation, then illustrated these concepts with examples. Some
important properties of linear transformation have also been observed through

kernel and range of linear transformation.

(11.7)Lesson End Exercise

1. Show that mapping T : R? — R3 defined by

T(x,y,z)=(y+z, x+y—2z, x+2y—2z2) is a linear transformation. Find
Range(T), Ker(T), Rank(T), Nullity(T).

Ans Range(T) = L((1, 1, 2), (0, 1, 1)), Ker(T) = L((3, —1, 1))

2. Find a linear transformation T : R? — R3

such that T(1,2) = (3,-1,5) and T(0,1) = (2,1, -1). Also find
Range(T), Ker(T), Rank(T), Nullity.

Ans Range(T) = L((2, 1, —1), (-1, =3, 7)), Ker(T) = {(0, 0, 0)}

3. Find a linear transformation T : R* — R? whose image is generated by
{(1, 2, 3), (4,5,6)}.

Hint Since B = {(1, 0, 0), (0, 1, 1), (0, 0, 1)} is a usual basis of R®. So, the
range of T' is generated by T'(ey), T(ea), T'(e3). Put T(ey) = (1, 2, 3), T'(ez) =
(4, 5, 6) and T(e3) = (0, 0, 0).

Now let (z, y, 2) € R®. Then (z, y, 2) = ve; + yes + ze3

= T(z,y, z) = 2T (e1) + yT(e2) + 2T (e3)

= (1, 2, 3) +y(4, 5, 6)
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= (x + 4y, 2x + 5y, 3z + 6y).

(11.8) University Model Questions

1. Let V and W be two vector spaces over the same field F and T : V — W
be a linear transformation with kernel K. Prove that

(1)K is a subspace of V.

(13)T (V') is a subspace of W.

2. Find a linear transformation T : R® — R3 whose image is generated by
(1,0, -1), (1, 2, 2).

3. Let T : R® — R? be a mapping defined as

T(z, vy, 2) = (z,y), V(z,y, z) € R®. Show that T is a linear transformation
and find Ker(T).

(11.9) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.

(#ii) Singh, S. and Zameerudin, @Q., Modern Algebra, Vikas Publishing House
Put. ltd.
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Lesson-XI1I Inverse of Linear Transformation

12.0 Structure

12.1 Introduction

12.2 Objectives

12.3 Bijective linear transformation
12.3.1 — 11.3.5 Definitions
12.3.6 Theorem

12.4  Invertible Operator

12.4.1 Definition

12.4.2 —12.4.5 Theorems

12.4.6 Fxample

12.5 Let Us Sum Up

12.6 Lesson end exercise

12.7 Unwversity Model Questions
12.8 Suggested Readings

(12.1) Introduction : In this lesson we assume linear transformations on
finite dimensional vector spaces. Analogous to the inverse of functions, we
can find inverse of bijective linear transformations. Moreover the inverse of a
linear transformation also turns out to be a bijective linear transformation.
(12.2) Objective : The students will understand the techniques of explicit
computation of the inverse of a bijective linear transformation.

(12.3) Bijective linear transformation

(12.3.1) Definition (One-One Transformation): Let T : V. — W be a
linear transformation. Then T is said to be one-one if T'(z) = T(y) = x =
y,Vae,yeV.

(12.3.2) Definition (Onto Transformation): Let T : V — W be a linear
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transformation. Then T is said to be onto if W = Range(T).

(12.3.3) Definition (Bijective Transformation): Let T : V — W be a
linear transformation. Then T is bijective if it is both one-one and onto.
(12.3.4) Definition (Non Singular Transformation): A linear transfor-
mation T : V(F) — W(F) is said to be non- singular if Ker(T) = {0}.
(12.3.5) Definition (Singular Transformation): A linear transformation
T:V(F)— W(F) is said to be singular if Ker(T) # {0}.

(12.3.6) Theorem: A linear transformation T : V. — W is non singular if
and only if the images of a linearly independent set is linearly independent.
Proof Suppose that T : V. — W is non singular. Let {1, za, ..., x,}
be a linearly independent subset of V. We have to show that
{T(x1), T(xs), ..., T(x,)} is linearly independent.

For this, consider ayT(x1) + aT(x2) + ... + T (x,) =0

= T(onzy + asxs + ...+ apx,) =0

= oxr; tagry+ ...+ apr, =0

=Sar=ay=...=a, =0.

Therefore {T(x1), T'(z3), ..., T(x,)} is linearly independent.

Conversely, suppose that T takes linearly independent subset to a linearly in-
dependent. Let x € Ker(T). Then T(x) = 0. To prove that T is non-singular
we have to show that x = 0. For this, suppose that x # 0. Then {z} is lin-
early independent which implies that {T'(z)} is linearly independent. Therefore
T(x) # 0 which is a contradiction. = x = 0.

Hence T is non singular.

(12.4) Invertible Operator

(12.4.1) Definition : A linear operator T : V. — V is said to be invertible
operator if there exists an operator S : V — V such that ST =TS = I, where
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I 1s an identity operator. Here S is called the inverse of T' and is denoted by
T
(12.4.2) Theorem: The inverse of linear operator is unique.
Proof Let T : V — V be an invertible operator. If possible, suppose that there
exist two inverse of T' say Si, So. Then SiT =1=TS5;...... (1)
ST =1=T5;....... (2).
Now S, = S;1

= 51(TS>)

= (517)Ss

=15

= 9.
Therefore, the inverse of an invertible operator must be unique.
(12.4.3) Theorem: Let V' be a vector space over a field F and T :V — V
be a linear operator. Then T is invertible if and only if T is bijective.
Proof First, we suppose that T is bijective. To prove that T s invertible, we
define SV =V by S(y) =z if y =T (x).
I S is well defined function: Since T is one-one, onto. So for each y € V
there exizts a unique x € V such that y = T'(x) = there ezists a unique v € V
such that S(y) = x.
Therefore S is a well defined map.
IT S is linear operator: Let yi, yo € V and S(y1) = x1 so that y; = T(xq)
S(y2) = x9 so that yo = T(z2).
Let o, B € F. Then T'(axy + fxs) = oT(x1) + BT (x2) = ayr + Pya
= axy + fry = S(ays + By2)
= aS(y1) + BS(y2) = S(ay: + Bya).

Therefore, S is a linear operator.
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Now, let x € V and y = T(x). Then S(y) = x.
(ST)(x) = S(T(x)) = S(y) = =

= ST =1.
Similarly, TS(y) =T(S(y)) =T(x) =y
=TS=1.

Hence T is invertible and T~ = S.

Conversly, suppose that T is invertible. Then there exists a linear operator
S:V =V such that ST =TS = 1. Now, let x, y € V such that T(x) = T(y)
= S(T(2) = S(T(y))

= (S0T)(x) = (SoT)(y)

= I(z) = 1(y)

= x =y. Therefore, T is one-one.

Similarily, let y € V. Then S(y) = x = T'(z) = y. So there exists x € V such
that T(x) =y = T is onto. Hence T is one-one and onto.

(12.4.4) Theorem: If T, S, U be linear operators on V such that ST =
TU = 1. Then T is invertible and S = U =T~1.

Proof Given that T, S, U are linear operators on V' such that

ST=TU = 1.

To show that T is invertible, it is enough to show that T is one-one and onto.
For this, let x, y € V such that T'(x) =T (y)

= S(T(x)) = S(Tw))

= ST(x) = ST(y)

= I(x) = I(y)

= x =vy. Thus T is one-one.

Now, let y € V' be any element, then there exists x € V' such that U(y) = x

because S is a mapping.
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= T(x)=TU(y) =TU(y) =1(y) =y

= T is onto. Hence T is invertible.

Now we show that S = U =T, for that we have ST =1

= (ST)T~' =1IT"!

= S(TT ) =T"

= SI=T"

= S =T""1 Also we have TU = I

=T YTU)=T""1

= (T'NU =T""

= [U=T"

= U =T~'. Hence the result.

(12.4.5) Theorem: Let V be a vector space over a field F and T, S be linear
operators on V. Then

(i) if S and T are invertible, then T'S is also invertible and (T'S)™' = S~'T~1.
(#1) if T is invertible and 0 # « € F, then oT is invertible and (aT)™' = 277!
(i13) if T 1is invertible, then T~ is also invertible and (T~')~' =T.

Proof (i) Given that S, T are invertible= There exists S™, T~ such that
SS=8"1S=Tand TT' =TT =1.

To show that ST 1is invertible, first we show that ST s one-one: Cosider
ST(x) = ST(y)

= S(T(x)) = S(T(y))

= T(z) =T(y) because S is one-one

=x =1y because T is one-one

Therefore ST is one-one.

Now, let y € V be any element. Since S is onto, so there extists x € V such

that S(x) = y. Similarly T is onto so for each x € V there exists z € V
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such that x = T(z). Therefore for each y € V there exists z € V' such that
ST(z)=5(T(z)) = S(z) =y.

Hence ST is invertible. Now, (ST)(T'S™') = S(TT-1)S™! = SIS™! =
SS~t=1

Similarly (TXS™9)(ST) =T (ST =TT =T"'T=1

= (ST)' =T7-15"1.

(17) To show that oT is invertible: For let (aT)(x) = (aT)(y)

= oT(z) = aT(y)

= T(x) =T(y) because o # 0 in F

= x =y. Therefore oI is one-one.

Let y € V. Then there exists x € V such that T(x) =y as T is onto. This
implies that for each y € V there exists Lz such that (aT)(1z) = aiT(z) =
T(x) =y = aT is onto. Hence oT is invertible.

Now (aT)(2T ) =a(H)T(T 1) =11 =1

= (aT)' =171

(1i1) Let y1, yo € V. Then there exists x1, xo € V such that y; = T(x1) and
y2 = T(z3).

= T y) = 21, T (y2) = @2

Now Suppose that T~ (yy) = T (ys)

= I = Ty

= T(x1) = T(z2)

= 1 = Y.

This shows that T~ is one-one.

Now, since T is onto, so for eachy € V there exists x € V such that T'(z) = y.
= for each x € V there exists y € V such that x = T~ (y) [because T is in-

vertible and T~ is a function]. Therefore T~' is also onto. Hence T~ is

132



one-one and onto = T~ is invertible operator on V.

Also, we have T-'T =TT ' =1

= (T) ' =T.

(12.4.6) Example: Let T : R?* — R3 be a linear transformation defined by

T(l’, Ys Z) = (3%, r—Y, 2]}+y+2)

Prove that T is invertible and find T!.

Solution We know that T is invertible if and only if T is one-one and onto.
(1) T is one-one:

Ker(T) ={(z, y, 2)|T(z, y, ) = (0, 0, 0)}

={(x,y, 2)|Bz, z —y,2x+y+2)=(0,0,0)}

={(z,y,2)|3z =0,z —y=0,2x+y+2=0}

={(z,y, 2)lr =0,y =0, 2 =0}

={(0,0,0)}

= Ker(T)={(0,0,0)}. Therefore, T is one-one.

(ii) T is onto: Let (a, b, c) € R® be any element and suppose there exists
(z,y, z) € R® such that T'(z, y, z) = (a, b, c)

= Bz, —y, 2 +y+2) = (a, b, ¢

=3 =ar—-—y=02x+y+z=c

r—b z=c—2rx—y

£ bz =c—2(8) — (2 -)

P 4
& 8 8
I
wie wia wis
< &
I

3—b, z=c—a+b.

Therefore, there exists (§, § —b, —a+b+c) € R3 such that
T(%, §—b —a+b+c)=(a, b c). ThusT is onto.

Hence T is one-one and onto = T is invertible.
We have T'(z, y, z) = (a, b, ¢)
=T a,b,c)=(z,y,2)=(5,§—b, —a+b+c)
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=Tz, y,2) = (%, £ —y, —v +y+ 2) is the required inverse of T.

(12.5) Let Us Sum Up: As we have seen in set theory, every bijective map
15 invertible and inverse is also bijective. With the same curiuosity, we have
seen in this lesson that bijective linear transformation is invertible. Moreover,
the ingective linear transformation on finite dimensional vector spaces is also
wnvertible and vice-a-versa. We have explicitly computed the inverse of invert-

ible linear transformation on finite dimensional vector space.

(12.6) Lesson End Exercise

1. Let T be a linear operator on R? defined by

T(z,y, 2) = (2x, 4 —y, 22+ 3y — 2). Show that T is invertible and find T~".
2. Let T be a linear operator on R? defined by

T(z,y,2)=(x—2y—2z,y— 2z z). Show that T is invertible and find T~'.
3. Show that each of the following linear operators T is invertible and find the
formula for T—*

(i) T(z,y, 2) = (x — 3y — 2z, y — 4z, x)

(7)) T(z,y, 2) = (x+ 2,z — 2, y).

4. Let T be a linear operator on R? defined by

T(z, vy, 2) = (x — 3y — 2z, x — 4z, 2). Show that T is invertible and find T~".
5. If T is a linear transformation on T(x,y) = (azx + Py, ax + by) for
(r,y) € C* and «, B, a, b € C. Prove that T is invertible if and only if
ba — af # 0.

Hint T is invertible if and only if T is one-one and onto.

T is invertible if and only if Ker(T) ={(0, 0)} i.e. Ker(T) = {(0, 0)}

{(z, »)IT(z, y) = (0, 0)} = {(0, 0)}

{(z, y)l(ax + By, ax + by) = (0, 0)} = {(0, 0)}
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{(z, y)lax + By = 0, ax + by = 0} = {(0, 0)}

a B
& #0< ba—af #0
a b

(12.7) University Model Questions

1. Let S, T be linear operators on a vector space V(F'). Show that T and S
are 1nvertible if and only if T'S and ST are invertible.

2. Let V and W be vector spaces over the same field F' such that dim(V) =
dim(W) and T : V. — W is linear transformation. Then prove that T is in-
vertible if and only if T is non-singular.

(12.8) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,
New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Unit-IV

Lesson-XII1 Open and Closed set of R

13.0 Structure

13.1 Introduction

13.2 Objectives

13.3 Open Sets

13.4 Properties Of Open Sets
13.5 Closed Sets

13.6 Let Us Sum Up

13.7 Lesson End Ezercise
13.8 University Model Questions
13.9 Suggested Readings
(13.1) Introduction

In the previous lesson, we have seen that the denumerable sets are “small”
whereas the non-denumberable sets are big. In this lesson, we will see that
some sets are "thick” that is they contain an entire neighbourhood of each of
its points. We shall be dealing only with real numbers and sets of real numbers
unless otherwise stated.

(13.2) Objective

In this lesson, we shall study the concept of neighbourhood of a point, open
sets and closed sets on the real line , their examples and properties.

(13.3) Open Sets

(13.3.1) Definition A set N C R is called the neighbourhood of a point a, if

there exists an open interval I containing a and contained in N, i.e.,

aelCN
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Remark:

1. Every open interval is a neighbourhood of each of its points.
2. The set R is the neighbourhood of each of its points.

3. The closed interval [a,b] is the neighbourhood of each point of (a,b) but
it is not the nbd. of the end points a and b.

4. The empty set is nbd. of each of its points in the sense that there is no

point in empty set of which it is not a nbd.

5. A non-empty finite set is not a nbd. of any of its points.For, a set can be
a nbd. of a point if it contains an interval containing that point. Since
an interval necessarily contains an infinite number of points, therefore
in order that a set be a nbd. of a point it must necessarily contain an

infinty of points.
6. The set Q of rationals, the set Z of integers, the set N of natural numbers

are not the nbd of any of their points.

(13.3.2) Definition Let A CR. Then A is said to be open if it is a nbd. of
each of its points. Equivalently, A is open if for each x € A,3e > 0 such that
(x —e,x+€) CA.

In the light of the above remark and the definition of the open set, it is clear
that:

1. Fvery open interval is an open set.

2. The set R is open.
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3. The closed interval [a,b] is not an open set as it is not the nbd. of the

end points a and b.
4. The empty set is an open set .
5. A non-empty finite set is not an open set.

6. The set Q of rationals, the set Z of integers, the set N of natural numbers

are not open sets.

7. The set {% 'n € N} 1$ not open.

(13.4) Properties of Open sets

(13.4.1) Theorem Any union of open sets is open.

Proof. Let {Ay: X € A} be the family of open sets. We shall show that
UseaAnis open. For this, let © € |J,caAx. Then x € Ay, for some X € A.
Since each Ay is open, there erxists some € > 0 such that x € (v — e,z +¢€) C
Ax. Thus, x € (x —€e,x+¢€) C Uyecadr. This proves that |J oA Axis open.
Hence the proof.

(13.4.2) Theorem Finite intersection of open sets is open.

Proof. Let A and B be any two open sets. We shall show that AN B is an
open set. For this, let x € ANB. Thenx € A and x € B. Since A and B are
open sets, there exist ¢, > Oandey > 0 such that © € (r — e, + €3) C A and
x € (x—ey,x+e6)C B. Let e = min {e,e3}. Clearly, x € (x — e,z +¢€) C
AN B. This proves that AN B is open. Hence the proof.

(13.4.3) Theorem Prove that every open set is a union of open intervals.
Proof. Let A be an open set and x\ € A. Since A is open, there is an open

interval I, for each of its points xy such that
Z‘)\Elm)\ QA, \V/ZL’)\EA.

138



Again the set A can be thought as the union of singleton sets like {x)}. There-

fore,
A=l UL, cA
implies,

A=JL,

. Hence the proof.

(13.4.5) Definition A point x is said to be an interior point of a set S
if S'is a nbd. of x. The collection of all interior points of a set is called the
interior of the set. The interior of a set S is generally denoted by S°.
(13.4.6) Theorem Interior of a set is an open set.

Proof. Let S be a given set and S° be its interior.

If S° = ¢, then S° is open. Let S° # ¢ and let x € S°. Then x is an interior
point of S, there exist an open interval I, such that x € I, C S. But I, being
an open interval, is a nbd. of each of its points. This implies, every point of
I, is an interior point of I, and I, C S. Therefore, every point of I, is an
intertor point of S. This implies, I, € S°. That is, x € I, C S°. This implies
that every point of S° is an interior point of S°. Hence S° is an open set.
(13.4.7)Theorem The interior of a set S is the largest open subset of S.
Proof We already know that interior of a set S is an open subset of S. We
shall now show that any open subset A of S is contained in S°. For this, let x
be any point of A. Since an open set is nbd. of each of its points, therefore A
is a nbd of x. But S is a superset of A, it follows that S is also a nbd. of x.
This implies, x 1s an interior point of S and therefore x € S°.

That is, © € A implies v € S°.

Therefore, A C S°.

Hence, every open subset of S is contained in S°. Thus, the interior of S is

139



the largest open subset of S.

Observation:

1. Any intersection of open sets need not be open. Let I, = (—%, %) ,n € N.

Then {I,},cy s an infinite family of open sets and ()1, = {0}, which

being a non-empty finite set is not an open set.

2. Fvery open interval is an open set. But every open set need not be an
open interval, for A = (0,1) U (3,4) is an open set being the union of

two open sets but A is not an interval.

3. FEvery open set is a union of open intervals. Lets S be an open set and
xx € S. Then there exist an open interval say, I, for each x\ € S such
that

Ty € IgcA C S,VJ/’)\ eS.
Clearly, S =J I,
(13.5) Closed Sets
(13.5.1) Definition Let A be a subset of R. Then a is said to be closed if its

compliment R \ A is an open set.

Remark:

1. Every closed interval [a,b] is a closed set as R\ [a,b] = (—o00,a) U (b, 0)

1S an open set.
2. The set R is closed as R\ R = ¢, is an open set.

3. The empty set is closed as R\ ¢ =R, is an open set.
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4. The sets (a,b] and [a,b) are neither open nor closed sets.

(13.5.2) Theorem Arbitrary intersection of closed sets is closed.

Proof. Let {A): X € A} be the family of closed sets. We shall show that
MieaAris closed. For this, we shall show that R\ (oA Ax is an open set.
Cleraly,

R\ (4 =R\ Ay

PYTN

Since each Ay is a closed set, it follows that R\ Ay is open for all \. Also,
arbitrary union of open sets is open, so |J (R '\ Ay) is open. Thus, R\ [),caAx
1s an open set. Hence the proof.

(13.5.3) Theorem Finite union of closed sets is closed.

Proof.: Let A and B be any two closed sets. To show that AU B 1is closed ,
we shall show that R\ (AUB) =R\ ANR\ B is open. Now, A and B are
closed implies R\ A and R\ B are open. Since finite intersection of open sets
is open, we have R\ ANR\ B is open. Hence the proof.

Observation:

1. Any union of closed sets need not be closed. Let A, = [%, 1} ,n € N.
Then {An}, ey @5 an infinite family of closed sets and |J A, = (0,1],

which is not a closed set.

2. The set of real numbers is a closed set as its complement is empty set,

which is open.
3. The set of integers is not a closed set.

4. The set of rational numbers is not a closed set.
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(13.6) Let us sum up: In this lesson, we have defined open sets and closed
sets on real line. Open intervals are the open sets on real line. We also stud-
ted that arbitrary union of open sets is open. The set of real numbers and the
empty set are both open and closed.Also, there are sets which are neither open

nor closed.

(13.7) Lesson End Exercise

a. Give an example of each of the following:

1 a set which is a nbd. of each of its points.

Sol. The open interval (1,2).

2 a set which is not nbd. of any of its points.
Sol. The finite set {1,2,3,4,5}.
3 a set which is a nbd. of each of its points with the exception of one

point.

Sol. The set (1,4] is nbd. of each of points except 4.

4 a set which is a nbd. of each of its points with the exception of two
points.
Sol. The closed interval [5,7] is nbd. of each of its points except
the end points 5 and 7.

5 a set which is a nbd. of each of its points with the exception of n
points, n > 1.
Sol. The set S =(0,1)J{1,2,3,4,5...,n}, is a nbd. of each of its
points except n points 1,2,3,4,5,....,n.
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b. Give an example of each of the following:

1 an open set which is not an interval.
Sol. The set A=(1,2)J(3,4). is an open set being the finite union

of two open sets. But A is not an interval.

2 an interval which is not an open set.

Sol. [2,3] is an interval but not an open set.
3 a set which is neither an interval nor an open set.
Sol. The finite set {1,2,3} is neither an interval nor an open set.

c. Which of the following are closed,open, neither open nor closed set?

1 {z:0<z<1}

2 10,1] U [2,3]
S{r:1< x <7}

4 {r:4 <z <6}

b The set of integers 7

6 The set of rationals Q

Sol c.

1 {z:0<z<1}=10,1], being a closed interval is a closed set.
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210,1] U [2,3], is a closed set being the finite union of closed sets
[0,1] and [2,3].

3{r:1< x <7} =(1,7), being an open interval is an open set.

4 {x:4<x<6}=1[4,6), is neither open nor closed.

b The set of integers 7. is not closed as it is not the nbd. of any of its
points. The set of integers has no limit points and therefore Z is a

closed set.

6 The set of rational numbers Q is not the nbd. of any of its points.
Also, it doesnot contain all of its limit points, therefore the set of

rational numbers is neither open nor closed.

d. Prove that R — N and R — N are open sets.

Sol. Let x € R — N =N¢ then x ¢ N, that is = is not a natural number.

If n is the natural number nearest to x, then there exists € = |x;"| >0 s.t
(x — €,x + €) does not contain any natural number, i.e., (x — €,z + €) N
N=¢
Therefore, (x — €,z +€) C N°
= N¢is a nbd of x.
= N¢ is open.
Hence, R — N 1is open.
Again, let v € R — 7 = Z°, then x ¢ 7Z, that is  is not an integer.
|[z—n]

If n is the integer nearest to x, then there ewists ¢ = —— > 0 s.t
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(x — €,x + €) does not contain any point of Z, i.e., (x — e,z + €)NZL = ¢
Therefore, (x — €, x + €) C Z°

= Z°is a nbd of .

= Z° s open.

Hence, R — 7Z 1is open.

(13.8) University Model Questions

1. Define open sets. Give two examples. Show that the arbitrary union of

open sets is open.
2. Show that every finite set is closed.
3. Show that every non-empty open set is a union of open intervals.

4. Give an example to show that

1 a subset of a closed set need not be closed.

1 a set containing a closed set need not be closed.

5. Let A be a closed set and B be an open set. Show that B-A is an open

set.

(13.9) Suggested Readings

1 T. M. Apostol, Calculus (Vol. 1), John Wiley and Sons (Asia) P. Ltd.,
2002
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2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international
Publishers, 2010.

3. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wi-
ley and Sons (Asia) P. Ltd.,2000.
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Lesson-XI1V Denumerable and Non-Denumerable Sets

14.0 Structure

14.1 Introduction

14.2 Objectives

14.3 Denumerable Sets

14.4 Ezamples and Properties Of Denumerable Sets
14.5 Non-Denumerable Sets

14.6 Let Us Sum Up

14.7 Lesson End Ezercise

14.8 University Model Questions

14.9 Suggested Readings

(14.1) Introduction: With the notion of bijection, it is easy to formalize the
1dea that two finite sets have same number of elements. We just need to verify
that their elements can be placed in pairwise correspondence. It is natural to
generalize this to infinite sets and indeed to any arbitrary sets.

(14.2) Objective

One is led to consider some unusual subsets of the real line and it is natural
to wonder if one can give a precise intuitive meaning to the feeling that some
infinite sets have more elements than other infinite sets. (for example, real line
seems to have more elements than the natural numbers in it.)

(14.3) Denumerable Sets

The notion of equivalence of sets is supposed to lead us to a notion of relative
sizes of sets. Equivalent sets should by rights have same number of elements.
(14.3.1) Definition. Two sets X and Y are said to be equivalent, symbol-
ized by X ~Y | if there exists a one to one correspondence f: X — Y.

Remark:
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1. Equivalence is an equivalence relation on class of sets.

2. Any two open(closed) intervals are equivalent.

3. Any open interval is equivalent to the set of real numbers.

4. If XY, Z and W are sets with XN Z =¢ =Y NW and X ~ Y and
Z~W, then (XUZ)~ (YUW).

5. If X,Y,Z and W are sets such that X ~Y and Z ~ W, then (X x Z) ~
(Y x W).

(14.3.2) Definition A set X is said to be finite if it is either empty or X ~ Ny
, where N = {1,2,3,4,5,...,k} .
(14.3.3) Definition A set X is said to be denumerable provided that X ~ N.

Remarks:

1. A denumerable set can be thought of as the smallest infinte set.

2. Let X be a denumerable set. then there is a bijection f: N — X. If we
denote
fQ) =21, f(2) =x9,..f (k) = Tk, ... , then the elements of X be put

in a sequence {T1, o, ..., Tg,....} .
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3. Every infinite subset of a denumerable set is denumerable.

4. If X is a denumerable set and Y is a finite set then X UY is denumerable.

(14.4) Examples and Properties of Denumerable Sets

(14.4.1) Theorem. The set of all even natural numbers N, = {2n: n € N}
1s denumerable.

ProofTo show that the set of even natural numbers is denumerable, consider

the mapping f : N — N, defined as,

f(n)=2n
f is one — one
Let n,m € N be such that

f(n) = f(m)

implies,

2n = 2m
implies,

n=m

f is onto

Clearly, for each y=2n € N, there is n€ N such that f (n)=2n=y.

Therefore, f is a bijection. Hence, the set of even natural numbers is

denumerable.
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(14.4.2) Theorem The set of integers,Z is denumerable.
Proof. Consider the function, f: N — Z, defined as

. % i if nis even,
-5 if n1s odd.

We shall show that f is a bijective map.

f is one — one

Let n,m € N be such that f (n) = f(m). Then,

Casel: When both n and m are even natural numbers. Now,

f(n) = f(m)
implies,
n_m
2 2
implies,
n=m.

f(n) = f(m)
implies,
n—1 ~m-1
2 2
implies,
n—1=m-—1.
implies,

f is onto

Let ye Z. Casel: y is a posilive integer.
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Subcasel:y is a positive even integer.

Let y=2n, for some natural number n. Then there is some x=4n , n€ N such
that f (z) =% =2n=y.

Subcase2:y is a positive odd integer.

Let y=2n-1, for some natural number n. Then there is some r=4n-2 , ne N

such that f (z) =42 =2n— 1 =y.

Case2: y is a negative integer.

Subcasel:y is a negative even integer.

Let y=-2n, for some natural number n. Then there is some r=4n+1 , ne N
such that f (z) = —% =-2n=y.

Subcase2:y is a negative odd integer.

Let y=-(2n — 1), for some natural number n. Then there is some x=4n-1 ,
ne N such that f (z) = —% =—02n-1)=uy.

Clearly, pre image of 0€ Z is 1. Therefore, f is onto.

Hence, fis a bijective map. This proves that Z is denumerable.

(14.4.3) Theorem The union of two denumerable sets is denumerable.
Proof. Let A and B be any two denumerable sets. We shall show that AU B
s denumerable.

Case 1: ANB=¢

Since A ~ N and N ~ N,, we have A ~ N,. Similarly, we have B ~ N,.
Consequently, we have (AU B) ~ (N, UN,) = N, which shows that AU B is
denumerable.

Case 2: ANB # ¢

Let C = B\ A. Then AUC = AUB and ANC = ¢. Also, C C B is either

finite or denumerable. If C is finite, then AU C' is denumerable as union of a

finite set with a denumerable set is denumerable. If C' is denumerable, then by
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case 1 AU C is denumerable. Hence, the set AU B is denumerable.

Remark:

1. Finite union of denumerable sets is denumerable.

2. The set Z is denumerable as Z =NU{0} U —N.

(14.4.4) Theorem The set N x N is denumerable.

Proof : Consider the function f : N x N — N given by f (j, k) = 273%, for
all (j,k) € N x N. this function is injective, so that N x N ~ f (N x N) C N.
Since N x N s infinite, so is f (N x N). Since infinite subset of a denumerable
set is denumerable, it follows that f (N x N) is denumerable and so is N x N.
Hence the proof.

(14.4.4) Theorem. The set of rational numbers Q is denumerable.

Proof: We can represent each rational number uniquely as §, where p € 7
and ¢ € N and the greatest common divisor of p and q is 1. Let Q. be
the set of all such § > 0 and let Q_ be the set of all such § < 0. Then
Q = Q u{0}Q_. Clearly, Q; ~ Q-_. hence, to show that Q is denumer-
able, it is sufficient to show that Q. is denumerable. For this, we consider
a function f: Qy — N x N given by f (g) = (p,q) . Since fis injective ,
we have Q4 ~ f(Qy) € N x N. Also, Q, is infinite so f(Q) is an infinite
subset of the denumerable set N x N. Therefore, f(Q,) is denumerable and
consequentlyQ, is denumerable. Hence the proof.

(14.5) Non-Denumerable Sets

(14.5.1) Definition A set X is said to be non-denumerable if it is not denu-
merable.

(14.5.2) Theorem. The open unit interval (0,1) of real numbers is a non-
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denumerable set.

Proof : Each z€ (0,1), can be expressed in the form .xix2xs..., where each
x; € {0,1,2,3,4...,9} for all n € N. For example, % = .333333....In order to
have a unique infinite decimal expression , for those numbers with a terminat-
ing decimal expansion such i = .25, we append 9’s so that }l =.2499999... and
not as }L = .250000...

Now suppose that the set (0,1) is denumerable. Then there exists a bijection

f:N—(0,1). So, we may list all elements of (0,1) as follows:

f (1) = .a11012413...
f (2) = .a210922093...
f (3) = .a310a320a33...
f (k?) = .Ap10k2Qks3...

, where each a;; € {0,1,2,3,4,..,9}. Let z = z12023... be defined by
2z = bif ag # 5 and z, = 1 ifag, = 5, for each k € N. Clearly, z € (0,1)
but z # f(k), for any k € N, which is a contradiction. Thus, (0,1) is non-

denumberable.
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Observation:

1. Since (0,1) C R, it follows that the set of real numbers is non-

denumerable.

2. The set of irrational numbers is non denumerable. For, if R\ Q is
denumerable, then the union (R\ Q) UQ = R is denumerable, which is

a contradiction.

(14.6)Let us sum up: In this lesson, we defined denumerable and non-

denumerable sets. Denumerable sets are considered as ’

“small”” infinite sets,
while non- denumerable sets are considered as ”‘big”’ infinite sets. From this
point of view, the set of natural numbers, the set of integers and the the set of

rational numbers are all small relative to the set of real numbers.

(14.7) Lesson End Exercise

1. Prove that the set of all sequences whose elements are either zero or one

18 not countable.

2. Prove that the set A=2": m is an integer. is countable.
Hint Define a mapping f : Z — A as f(m) = 2™. Use the fact that
the set of integers is equivalent to the set of naturals and equivalence of

sets is a transitive relation.

3. Show that the set of prime numbers is denumerable.
Sol As the set of natural numbers is denumerable sets and the set of
prime numbers is a subset of natural numberss.Also the set of prime

numbers is an infinite subset of the denumerable set N, and we have that
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an infinite subset of a denumerable set is denumerable, it follows that the

set of prime numbers is denumerable.

4. Show that if A and B are denumerable sets then Ax B is also a denu-
merable set.
Hint Since A and B are denumerable sets, there exists bijections f :
N — Aand g : N — B. Define a map h : N — A X B as
h(n)=(f(n),g(n)). Clearly, h is a bijection.

5. Show that the set of all odd natural numbers,N, is denumerable.

(14.8) University Model Questions

1. Define Denumerable sets. Give two examples. Show that the set of ra-

tional numbers is denumerable.

2. Show that the finite union of denumerable sets is denumerable and hence

show that the set of irrational numbers is non-denumerable.
3. Show that the set of complex numbers is non-denumerable.

4. Show that the interval [0, 1] is non-denumerable and hence show that the

set of real numbers is non-denumerable.

5. Find a bijection between the set of integers and the set of rational num-

bers.

(14.9) Suggested Readings
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1 T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd.,
2002

2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international
Publishers, 2010.

3. You-Feng Lin, Shwu Yeng T. Lin, Set Theory With Applications-
Mariner Publishing Company (1981).

156



Lesson-XV Limit points of a set

15.0 Structure

15.1 Introduction

15.2 Objective

15.3 Limat Points of a Set

15.4 Important Results

15.5 Let Us Sum Up

15.6 Lesson End Ezercise

15.7  Unaversity Model Questions
15.8 Suggested Readings

(15.1) Introduction:In this lesson, we are going to study the notion of limit
points of a set and some important results based on the concept of limit points
of a set in R. The notion of limit point is an extension of the notion of being
“close” to a set in the sense that it tries to measure how crowded the set is. To
be a limit point of a set, a point must be surrounded by infinitely many points
of the set.

(15.2) Objective

The main objective of this lesson is to make students familiar with the notion
of limit points of a set which is fundamental for laying the foundation of real
analysis.

(15.3) Limit Points of a Set

(15.3.1) Definition. A real number | is said to be the limit point of a set
S C R, if every neighbourhood N of | contains a point of S other than l. That
i,

(NNSN{L} # ¢

Equivalently, a real number | is said to be the limit point of a set S C R, if
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every neighbourhood N of | contains infinitely many points of S. Limit point
of a set is also called as the accumulation point or the cluster point or the
condensation point.

Observation:

1. The set of integers has no limit point, for a nbd. (m— %,m+ %) of

m € Z, contains no point of Z other than m.

2. FEvery point of R is a limit point, for every nbd. of any of its points

contains infinite members of R.

3. Every point of the set Q of rationals is a limit point for between any
two rationals there are infinite rational numbers. Also every irrational
number is also a limit point of Q for between any two irrationals there
are infinite rational numbers. Thus, every real number is a limit point

of the set of rationals.

4. The set {% ‘n e N} has only one limit point, zero, which does not belong
to the set.

5. Every point of the open interval {a,b} is its limit point. The end points

a, b which are not in the set are also its limit points.
6. A finite set has no limit point.
7. The derived set of the set {X +1: mneN} is{0}u{L: neN}
8. The set {1 + %, n e N} has only one limit point 1.
9. 1 and -1 are the limit points of the set {1, -1, 1%, —1%, 1%, } :

158



(15.3.2) Definition The set of all limit points of a set S is called the derived
set of S and is denoted by S'. Thus,

S = {z:xis a limit point of S}.

(15.4) Important Results

(15.4.1) Theorem Prove that a real number | is a limit point of a set S iff
each nbd. of | contains infinitely many points of S.

Proof. Let | be the limit point of S. Then by definition, every nbd. N of [

contains a point of S other than . That is,

NS\l # ¢.

Suppose N contains only finitely many points of S. Let
NNS\Il={l,la....L,}

and e = min. {|l = li], |l = la|,...... Il —1,|} > 0.
Then (I — €,1+€) is a nbd. of l which contains no point of S. That is,

(l—el+e)nNS\{l} =9,

a contradiction. Thus,N contains infinitely many points of S. this proves the
direct part.

Conwversely, let | € R be such that each nbd. N of | contains infinitely many
points of S.

This implies, every nbd. N of | contains a point of S other than .

That 1s,

(l—el+e)NS\{l} # .
Thus, [ is the limit point of S.

Hence the proof.
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(15.4.2) Theorem Prove that a finite set has no limit point.

Proof . Let A={zy,xo,...... , T} be a finite subset of R. If possible, assume
that A has a limit point say x.

Now, if we choose ¢ = min.{|x—mz]|,|z— 22|, ...... T —x,|}, then
(x —e,x+€) is a nbd. of x which contains no point of A, a contradiction.
Hence our supposition was wrong. Since x is arbitrary, it follows that A has
no limit point.

(15.4.3) Theorem. Prove that 0 is the limit point of set

S:{l:nEN}.
n

Proof. For each ¢ > 0, (—¢,€) is a nbd. of 0. By Archimedean property of

reals, for each ¢ > 0,3n € N such that n > %

= i<e
= —e<0<ice
= % € (—€€)
Thus every nbd. of 0 contains a point of S, namely %
= 0 is the limit point of S.
Uniqueness.
S={t:neN}c(1].
We shall show that there is no real number other than 0 which is a limit point
of S. Let x be a non- zero real number. Then the following cases arise:
Case(i)
If x <0, then (—00,0) is a nbd. of x which contains no pint of S.

i.e.,(—00,0) NS = ¢.
Therefore, x is not a limit point of S.
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Case(ii)

If £ > 1, then (1,00) is a nbd. of x which does not contain any point of S.
i.e.,(l,00) NS = ¢.

Therefore, x is not a limit point of S.
Case(iii)

If x =1, then (%, oo) 1s a nbd. of x which doesnot contain any point of S.

(L)ns 1) -

Therefore, x is not a limit point of S.

Case(iv)

Ifo<z <1, then%>0

Therefore, there exists a unique natural number n such that
n<t<n+l

= lzx>L
n

n+1
1 1 1
= n+1 <z S nn—1

= the nbd. (%H,ﬁ) of x contains only one point %of S, i.e., only finite
number of points of S.

Hence 0 is the only limit point of S.

(15.4.4) Theorem. Prove that for any set A, A’ is a closed set.

Proof . To prove that A" is a closed set, we shall show that (A/)c 1S an open
set. for this, let x € (A')C.

= z¢A

= 1z is not a limit point of A.

= Janbd I =(x—e¢x+c¢€) of x such that

INA—{z}=¢.

Let y € I, then I being an open interval is an open set.
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= lis a nbd. of y. Also, INA—{z} = ¢.

= y is not a limit point of A.

=ygA =ye(4).

Now,ye I =ye (4)"

Therefore, I = (x — e,z +¢€) C (A)".

= (A/)c s a nbd. of x.

Since x is any element of (A')C, it follows that (A/)c is nbd. of each of its
points. This proves that (A/)c is open. Hence, A" is a closed set.

(15.4.5) Theorem If A, B C R, then

iACB=AcCH

ii (AUB) =A'UB'

iii (ANB) c AnB
proof.

i. If A" = ¢, then A" C B', since empty set is the subset of every set.
IfA + ¢, let € A and N be any nbd. of .
= N contains infinitely many points of A.
= N contains infinitely many points of B.
= 1 is a limit point of B. That is, z€ B'.
Now z€ A" implies z€ B’
Therefore, A" C B'.

i1. Since ACAUB and AC AUB
= A' C(AUB) and B C (AUB)
= AUB Cc(AUB) .1
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Now we proceed to show that (AU B)/ cAuB.

If (AUB) = ¢, then (AUB) c A UB'.

If (AUB) # ¢, letz € (AU B)' .

= 1z is a limit point of AU B.

every nbd. of x contains infinitely many points AU B.
every nbd. of x contains infinitely many points of A or B.
x 1s a limit point of A or a limit point of B.

e A" orze B’

wc AUB

Gl

Since z€ (AU B)/, implies 1€ A" UB' ....2

From 1 and 2 we have

(AUB) =A'UB.

iii. ANB C A implies (ANB) C A’
AN B C B implies (ANB) C B
Therefore, (ANB) ¢ A'NB'.

Note: (AN B)’ and A" N B may not be equal. For example, let A= (1,2),
B=(2,3). Therefore, AN B = ¢, implies (AN B)/ = ¢.

Also, A" =11,2], B' =[2,3].

AnB ={2}.

Therefore, (ANB) # A'N B’

(15.4.6) Definition Let SC R. Then the closure of S is defined as the set of
all those point in R which are either the points of S or the limit point(s) of S.
Closure of S is denoted by S.That is,

S=85US".

163



(15.4.7) Theorem Prove that for any set A, A is a closed set.
Proof To show that A is closed, it is enough to show that A* is open.
Let x be any element of (Z)C

v e (A)°

=1¢A

=ao¢ AUA

=>ar¢Aandx ¢ A

= Janbd [ =(x—¢€x+e€) of v suchthat INA=¢

Let y € I, then I being an open interval is an open set.

= lis a nbd of y. Also, INA=¢

= y is not a limit point of A.

=yd¢ A Alsoy ¢ A.

= y¢ AUA'. Alsoy ¢ A.

=y e (4)°

Sinceyel =ye€ (ﬁ)c.

Therefore, I = (x — €,z +€) C (Z)C.

= (Z)c is a nbd. of z. = A" is an open set.

= A s a closed set.

Hence the proof.

(15.4.8) Theorem Prove that A set is closed iff A= A.

That is, A s closed iff A contains all its limit points.

Proof If A= A, then A is closed because A is closed.
Conversely, let A be a closed set. We shall show that A = A. Clearly,
ACA (1)

IfA' = ¢ then A" C A.

IfA' = ¢ then A' C A.
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IfA # ¢ then let x € A'.

Suppose x ¢ A, then X € A°. Since A is a closed set, A is an open set.
Therefore, A€ is the nbd. of x.

Also, v € A' = z is a limit point of A.

= every nbd. of x contains infinitely many points of A.

= A° contains infinitely many points of A.

= AN A # ¢, a contradiction.

Thus, our supposition was wrong. Therefore, x € A. Since v € A" implies
x € A

Therefore A" C A.

Hence, A C A (2).

From (1) and (2) we have A = A.

Hence the proof.

(15.4.9) Theorem If A and B are subsets of R, then prove that

AN
C
Sy
Il

|
C

o]

N
|
|

ii ANB N
Proof (i) AUB = (AUB)U(AUB)
=(AUB)U (A UB')
=AU(BUA)UB

= (AuAd)uU(BUB)

=AUB

(ii)) ANB C A

= ANBCA
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Also, ANBCB

= ANBCB

Therefore, ANB C AN B

Note: The inclusion cannot be replaced by equality. For example, if A = (0,1)
and B = (1,2), then AN B = ¢.

Therefore, AN B = ¢.

Also,A =1[0,1] and B = [1,2].

Now, ANB = {1}.

Thus, ANB# ANB

(15.5) Let Us Sum Up: A limit point © of a set S is a point which can be
“approzimated” by the points of the set S in the sense that every neighbourhood
of x contains a point of S other than z itself. Limit point of a set is not unique.
A set may or may not have a limit point. Limit point of a set may or may not

belong to the set.

(15.6) Lesson End Exercise

1. Give an example of an infinite set with no limit point.

Sol: The set of natural numbers, N.

2. Give an example of a set with exactly one limit point.
Sol. Th set S:{% 'n e N} has exactly one limit point 0, which dosnot
belong to the set S.

3. Give an example of a set with exactly two limit points.
Sol. Consider the set S= {1 +% ‘n e N} U {2—1—% 'n e N} has two
limat points 1 and 2.
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. Give an example of set with infinitely many limit points.

Sol. each point of the set of real numbers is a limit point of R.

. Show that a set closed if it contains all its limit points.

Sol. Let S be a set. Assume that S is not closed. Then S¢ is not open.
Then there is some © € S¢ such that some nbd. of x contains a point of
S. Clearly, x is a limit point of S which lies in S°.

Thus, S is not closed implies there is a limit point of S which is not in

S. Hence a set is closed if it contains all its limit points.
(15.7) University Model Questions

. In each situation below, give an example of a set which satisfies the given

condition.

a. A bounded set with no limit point.
b. An unbounded set with no limit point.
c. An unbounded set with exactly five limit points.

d. A set whose derived set is whole of real line.
. Define derived set. Show that the derived set of a set is a closed set.

. Show that if x has a nbd. which contains only finitely many members of

a set S, then x cannot be a limit point of S.

. Is it true that if A and B are subsets of R then (ANB) = A'n B'?
Justify.

. Prove that a finite set has no limit points.
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(15.8) Suggested Readings

1 T. M. Apostol, Calculus (Vol. 1), John Wiley and Sons (Asia) P. Ltd.,
2002

2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international
Publishers, 2010.

3. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wi-
ley and Sons (Asia) P. Ltd., 2000.
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Lesson-XVI

Heine Borel theorem for closed and bounded intervals

16.0 Structure

16.1 Introduction

16.2 Objective

16.3 Definitions

16.4 Heine Borel Theorem

16.5 Let Us Sum Up

16.6 Lesson End Ezercise

16.7  University Model Questions
16.8 Suggested Readings

(16.1) Introduction:The notion of compact sets is of prime importance in
real analysis. The concept of compactnes is the abstraction of an important
property known as 'Heine- Borel Property’ posed by subsets of R which are
closed and bounded. Heine Borel theorem states that if I C R s a closed
interval, then any family of open interval in R whose union contains I has a
finite subfamily which covers I. Compactness is concerned with covering sets
with open sets.

(16.2) Objectives: This lesson aims at studying open cover, compact sets,
Heine-Borel Property, Heine-Borel Theorem and some exercises based on these
concepts.

(16.3) Open Covering

(16.3.1) Definition Let A be a non-empty subset of R. A family {Ax},c, of
subsets of R is said to be a cover of A if

Sc A

AEA

If each member of {Ax},ca 5 an open set, then the cover is called an open
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cover.
(16.3.2) Definition Let A be a non-empty subset of R. and {Ax},c, be an
open cover of A. If there exists a subset A' C A such that the sub family
{Ax} cnrs also covers A, then the sub family {Ax},c, is called subcover of

the open cover {Ay},.,. Observation:

1. Let Ay, = (—n,n), where n € N. Every member of the family {A,}, oy @5
an open interval interval and therefore an open set. The family {An}, on

is an open cover of R. Also, the cover is infinite.

2. Let A", = (=2n,2n), where n € N. Every member of the family
{Aln}neN 1s an open interval and therefore an open set. The family

{A,”}nEN 18 an open cover of R. Also, {A/n}neN is a sub-cover of

{An}nen-

(16.3.3) Definition A subset A of R is said to be compact if it is closed and
bounded.

(16.3.4) Definition A subset A of R is said to have the Heine -Borel property
if every open cover of a has a finite sub-cover.

(16.4) Heine-Borel Theorem

(16.4.1) Theorem If a set A satisfies Heine- Borel property, then any closed
subset of A satisfies Heine- Borel property.

Proof . Let A satisfies Heine- Borel property, and B be any closed subset of A.
We shall show that B also satisfies Heine- Borel property. Suppose {Bx}yca
is an open cover of B.

Therefore, B C |J,ca Ba

= B‘UBC B°U (U/\EA B,\) , where B¢ is open since B is closed.
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= R C B°U (Uyen Br) as B°UB =R

Now AC R, implies

A C B°U (Uyea B

= the family F consisting of B® and {Bx},c is an open cover of A.

But A has Heine- Borel property, implies F has a finite subcover say, G con-
sisting of B¢ and By, , By, Bxg, ..., By,. Since B C A, it implies that

B C B°UB,,UB\,UB),U....UB,,

Again, BN B¢ = ¢, it follows that

B C By, UB),UB,,U..... U By
= {B),, Bxry, Bxrgs .-, By, } s an open cover of B.

Thus, the open
cover {Bx} ea of B has a finite sub cover {By,, By, B, ....., By, } . Hence,
B also satisfies Heine- Borel property. This completes the proof.

(16.4.2) Theorem HEINE-BOREL THEOREM A set A is compact if
and only if A has the Heine- Borel property.

Proof . Assume that A be a compact set. Then A is bounded and closed. Let
a=g.lbA and b= lLu.b A. Therefore, A C [a,b].

If a=b, then A = {a} and ever open cover of A contains nbd. of a. This nbd.
is then the finite sub cover. Thus, A has the Heine- Borel Property.

Now, let a # b and |a,b] = I. We shall prove that I satisfies the Heine Borel
Property. Suppose I does not have the Heine Borel Property. Then there exists
a family F' of open sets which covers I, but no finite sub family of which covers
I. Divide I into two equal closed intervals I' and I”, where I = [a, “TH’} and
I = [‘LT”’] . Then at least one of these I and I cannot be covered by finitely
many members of F. Let I be that one of I and I" which is not covered by

finitely many members of F. Length of I, =1 (I;) = % (b —a). Again divide I,
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into two equal closed intervals Iy’ and I,>. Then atleast one of these cannot be
covered by finitely many members of F. Let Iy be that one of Iy and I which
is not covered by fnitely many members of F. Length of I, =1 (I3) = 2% (b—a).

Continuing this way, we get a sequence {I,} of closed intervals such that

t No I, can be covered by finitely many members of F.

wl=1yohL>LHD>I,D..
That 1is, I,41 C In,Vn-

ii Length of I, = 1(I,) = 37 (b—a) — 0 as n — oo,

Therefore, by Nested Interval Property of Sequences, ﬂi 15 a singleton. Let
N. = {x}, then x € I. Since the family F is an open cover of I, there is an
open set B € F such that x€ B

= Bisnbd. ofz

— € >0 such that (x — €,z +¢€) C B.

Now, Length of I, = l(I,) — 0 as n — oo. Therefore, there is a natural
number m such that | (I,) < € and I, C (v —¢,x+¢€) C B Thus, I, is
covered by a single member B of F, which is a contradiction (since no I, can
be covered by finitely many members of F). Therefore, our supposition was
wrong. This implies, I has Hiene-Borel Property. Since A is a closed subset
of I, therefore A also has the Hiene-Borel property.

Conwversely,let A have the Hiene Borel Property. We shall show that A is closed
and bounded. We know that{I,}, where I, = (—n,n) of open intervals cover
R. But A has Heine-Borel property implies, there exist finitely many natural
numbers ny,na, Ny, ...,y such that the finite family {1, In,,...., I} covers

A. If M = maz. nq,ng,ng,...,ng, then AC (=M, M). Hence, A is bounded.
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Suppose A is not closed. Then there exists an infinite subset B of A which has
no limit point in A. Let © € A and ¢ B, that is, z€ A\ B. Since x is not
a limit point of B, there exists an open interval G, around x which doesnot
contain any point of B. Let y € B, then y is not a limit point of B. There
exists an open interval H, around y containing only one point, namely y, of
B. Clearly, H, is infinite in number as B is infinite. Since the points belonging
to A are either in A\B or in B. Therefore, the family of open intervals G,
and H,, forms an open cover of A. This family has no finite sub-cover, because
if we omit say, H,, the corresponding point y is left uncovered. This is a
contradiction, because A has the Heine- Borel property, therefore every open
cover of A must have a finite sub-cover.

Therefore, our supposition is wrong. Hence, A is closed.

(16.5) Let Us Sum Up: On real line any closed and bounded set is compact.

However, this is not true for every metric space.

(16.6) Lesson End Exercise

1. Which of the following sets are compact

i. [0,1]U[3,4]
Sol. The set [0, 1]U[3, 4] being the finite union of closed and bounded

intervals is a closed and bounded set and therefore it is compact.

1. N
Sol. The set of natural numbers is not compact as it is closed but

not bounded.
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iii. A={1%,23,3%, ..., (132)°}
Sol. Since A is a finite subset of R, A is closed and bounded. Thus,

A is compact.

2. Show that finite union of compact sets is compact.
Sol. Let {Ay, Ay, ..., A} be a finite family of compact sets. Then each
A; is a closed and bounded set, 1 < i < n.
Let S =, A;.
Since the union of finite family of closed sets is closed, it follows that S
15 a closed set.

AZSO, Al - [Cli,bi] s 1 S 1 S n.

If a = min.{ay,as,as, ....,a,}
and b = max. {by, by, bs, ...., b, }
then S C [a, b]

= S is bounded.
Now S is closed and bounded, implies S is compact.

Hence the proof.

3. Show that arbitrary intersection of compact sets , containing atleast one
point in common s compact.
Sol. Let {Ay}da €xes be an arbitraray family of compact sets. Then
each Ay is closed and bounded for \ € 9.
Let S = (Vs An-
Since the intersection of an arbitrary family of closed sets is a closed set.
Therefore, S is a closed set.
Also S C Ay, Y\ €9 and each Ay is bounded.
Therefore, S is bounded.

Now S is closed and bounded, implies S is compact.
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Hence the proof.

4. Given the set S= {1,1.1,0.9,1.01,0.99,1.001,0.999, ...}

a Is the set S bounded?

b Does the set S have l.u.b and ¢.1.b? If so, determine them.
¢ Does the set S attains its bounds?

d Find the interior of S?

e Does the set S have any limit point? If so, determine them.
f Is S closed?

g Is S a compact set?

Sol.

a S={1}u{l+::neN} 09 1.1]

107
= 5 is bounded.

b S is non- empty bounded subset of R
Therefore, S has the l.u.b and the g.1.b.
1.1 is an upper bound of S and 1.1 € S.
= lub S =1.1
0.9 is a lower bound of S and 0.9 € S
= ¢.l.b 5 =0.9

¢ Yes
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d Let v € S. For any ¢ > 0, (x —e€,x+¢€) is a nbd. of z. Since
(x — €,z + €) contains infinitely many points which are not in S.
Therefore, S is not a nbd. of x.
= S is not a nbd. of any of its points.
= 5% = ¢.

e Yes, S has one limit point, namely 1.
f Since the only limit point 1€ S, implies S is closed.

g S is closed and bounded implies S is compact.

5 Which of the following are compact?

2

A:{(x,y) cR?: i—g—l-z—j zl,a#b}
2

b B:{(x,y)ERQ:%—i—i’—j;él,a#b}

c C={(x,y) € R*:ax + by +5 =0}

IS}

d D={(z,y) € R? : ax = by*}

e E={(x,y) e R?: 23 +¢> =1}
Sol:

a A is the boundary of an ellipse hence it is closed and bounded

= A is compact.

b B is an interior of an ellipse hence it is closed and bounded

= B s compact.
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c Cis a plane in R3, hence unbounded

= (' is not compact.

d D is a parabola and hence not bounded

= D is not compact.
e FE is not bounded

= I is not compact.

6 Which of the following subsets of R* are compact?

1 A(z,y) |z < 1 [y| < 1}
2. {(z,y) : |z| < 1,|y? <1}
3. {(z,y) : 2* + 3y* < 5}

4-A(w,y) 1 2® <y? + 1}
Sol.

1,2. The sets 1 and 2 are the interior of the square with boundary formed
by lines x = £1 and y = 1, hence are closed and bounded.

= 1 and 2 are compact.

3. The set 3 is the interior of an ellipse with boundary hence closed
and bounded

= 8 1s compact.

4. The set 4 is the boundary of a hyperbola which is unbounded

= 4 18 nmot compact.
7. Which of the following sets are compact?

a. {(z,y) € R?[2® +y?| < 1}
b {(z,y) e R 2% + 42| > 1}
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c. {(z,y) eR?|2® + 97| < 1}

d. {(z,y) € R?|2? +¢*| = 1}
Sol

a. The set a. is the interior and boundary of the unit circle in R2,
hence it is closed and bounded

= a. 15 compact.

b. The set b. is the exterior of the unit circle in R?, hence it is un-
bounded

= b. is not compact.

c. The set c. is the interior of the unit circle in R2, hence it is not
closed

= c. 1s not compact.

d. The set d. is the unit circle in R?, hence it is closed and bounded

= d. is compact.
(16.7) University Model Questions

1. State and prove Heine-Borel Theorem.

2. Show that a closed subset of a compact set is compact.

(16.8) Suggested Readings

1 T. M. Apostol, Calculus (Vol. 1), John Wiley and Sons (Asia) P. Ltd.,
2002

2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international
Publishers, 2010.
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3. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wi-
ley and Sons (Asia) P. Ltd.,2000.
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Lesson-XVII Bolzano-Weirstrauss Theorem

17.0 Structure

17.1 Introduction

17.2 Objective

17.3 Definitions

17.4 Bolzano- Weirstrauss Theorem
17.5 Let Us Sum Up

17.6 Lesson End Ezercise

17.7 Unwversity Model Questions
17.8 Suggested Readings

(17.1) Introduction The Bolzano- Weierstrass Theorem says something in-
tutive: that a set of numbers of infinite cardinality yet whose elements are
bounded in size, is going to have a huddle around at least one point.

(17.2) Objectives In lesson XV, we have seen that a finite set has no limit
point. Also, we have seen that an infinite set may or may not have a limit
point. In this lesson, we shall study Bolzano- Weierstrass Theorem, which sets
out sufficient conditions for a set to have a limit point. The main aim of this
lesson s to introduce Bolzano- Weierstrass Theorem to the students.

(17.3) Bolzano-Weierstrass Theorem

(17.3.1) Theorem Bolzano-Weierstrass Theorem Every infinite bounded
set has a limit point.

Proof : Let S be any infinite bounded set and m, M its infimum and supremum

respectively. Let P be a set of real numbers defined as follows:
{z : x exceeds at the most a finite number of members of S}.

Clearly, P is non empty as m € P. Also, M is an upper bound of P, for no

number greater than or equal to M can belong to P. Thus the set P is non-
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empty and is bounded above. Therefore, by the order completeness property, P
has the supremum say l. We shall show that | is the limit point of S. Consider
any nbd. (I — e, 1+ €) of I, where € > 0.

Since | is the supremum of P, there exists at least one member say q of P such
that ¢ > | — €. Since q € P, therefore it exceeds at most a finite number of
members of S and so | — e can exceed at most a finite number of members of S.
Also, l+e€ exceeds infinitely many members of S, implies (I — €,1 + €) , contains
infinite members of S. This proves that | is a limit point of S. Hence the proof.
Note: Boundedness is not necessary in order for an infinite set S to have a
limit point. The unbounded interval (a,00) has infinitely many limit points.
(17.3.2) Theorem Prove that a finite set has no limit point.

Proof. Let A={xy,xo,...... ,Tn} be a finite subset of R. If possible, assume
that A has a limit point say x.

Now, if we choose ¢ = min.{|x—z]|,|z— 22|, ....... T —ax,|}, then
(x —e,x +€) is a nbd. of x which contains no point of A, a contradiction.
Hence our supposition was wrong. Since x is arbitrary, it follows that A has
no limit point.

(17.3.3) Theorem Prove that 0 is the limit point of set

1
S:{—:nGN}.
n

Proof . For each ¢ > 0, (—¢,€) is a nbd. of 0. By Archimedean property of
reals, for each ¢ > 0,3n € N such that n > %

= i<e

= —e<0<ice

= Llec(—¢€¢)

Thus every nbd. of 0 contains a point of S, namely %

= 0 is the limit point of S.
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Uniqueness.

S={t:neN}c(01].

We shall show that there is no real number other than 0 which is a limit point
of S. Let x be a non- zero real number. Then the following cases arise:
Case(i)

If x <0, then (—00,0) is a nbd. of x which contains no point of S.
i.e.,(—00,0)NS = ¢.

Therefore, x is not a limit point of S.
Case(1i)

If x > 1, then (1,00) is a nbd. of x which does not contain any point of S.
i.e.,(l,00)NS = ¢.

Therefore, x is not a limit point of S.
Case(iii)

If x =1, then (%, oo) 1s a nbd. of x which does not contain any point of S.

<%,oo)ﬂ5—{1}:gb.

Therefore, x is not a limit point of S.

Case(iv)

If0<z <1, then >0
Therefore, there exists a unique natural number n such that

n§%<n—i—1

1 1
= Rn2T>a

1

1 1
= n+1<x§nn—l

= the nbd. (%H,ﬁ) of x contains only one point %of S, i.e., only finite
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number of points of S.

Hence 0 is the only limit point of S.

(17.3.4) Theorem Prove that for any set A, A’ is a closed set.

Proof To prove that A is a closed set, we shall show that (A/)C 18 an open
set. for this, let x € (A')C.

= x¢ A

= x 1s not a limit point of A.

= anbd. I =(x—e¢€x+c¢€) of  such that

INA—{z}=0¢.

Let y € I, then I being an open interval is an open set.

= [is a nbd. of y. Also, INA—{z} = ¢.

= y is not a limit point of A.

=yd A =>yc (A’)C.

Now,yel=ye (A')C.

Therefore, I = (x — e,z +¢€) C (A)".

= (A/)C is a nbd. of z.

Since x is any element of (A')C, it follows that (A/)C is nbd. of each of its
points. This proves that (A/)c is open. Hence, A" is a closed set.

(17.3.5) Theorem If A, B C R, then

iACB=ACB
ii AUB) =A'UB'
iii (ANB) c A nB

Proof.
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0.

100,

If A" = ¢, then A" C B', since empty set is the subset of every set.
IfA + ¢, let € A and N be any nbd. of .

= N contains infinitely many points of A.

= N contains infinitely many points of B.

= 1 is a limit point of B. That is, z€ B'.

Now ze A" implies z€ B'.

Therefore, A" C B'.

Since ACAUB and AC AUB

= A' C(AUB) and B' C (AUB)

= AUB c(AUB) .1

Now we proceed to show that (AUB) c A UB'.

If (AUB) =6, then (AUB) c A'UB'.

If (AUB) # ¢, letz € (AU B)' .

= x 1s a limit point of AU B.

= every nbd. of x contains infinitely many points AU B.
= every nbd. of x contains infinitely many points of A or B.
= xis a limit point of A or a limit point of B.

= 1€ A" or 1€ B’

= 2c AUB

Since z€ (AU B)I, implies v¢ A" U B’ ....2

From 1 and 2 we have
(AUB) =A'UB.

AN B C A implies (ANB) C A
AN B C B implies (AN B) C B

Therefore, (ANB) ¢ A'NB'.

/
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Note: (AN B)/ and A" N B' may not be equal. For example, let A= (1,2),
B=(2,3). Therefore, AN B = ¢, implies (AN B)l = ¢.

Also, A" =[1,2], B' =[2,3].

A'NnB ={2}.

Therefore, (AN B), +ANB.

(17.3.6) Theorem Prove that the derived set of an infinite bounded subset of
R is bounded.

Proof Let S be an infinite bounded subset of R, then there exist real numbers
h.k such that SC [h, k] .

Since S is infinite and bounded S

!

£ 0

[By Bolzano Weierstrass Theorem|

. We shall show that no element of S is less than h r greater than k.

If v < h, then fore = h—x >0, (v —¢€,x+¢€) is a nbd. of x containing no
element of [h, k] and hence containing no element of S.

Therefore, v ¢ S’

If © > k, then fore =x —k >0, (x—¢,x+¢€) is a nbd. of x containing no
element of [h, k] and hence containing no elements of S.

Therefore, v ¢ S’

Thus, x ¢ [h, k]

= z¢8

= all the limit points of S lie in [h, k]
= S C[hk

= S is bounded.
(17.4) Let Us Sum Up Bolzano-Weierstrass Theorem gives us a sufficient
condition for an infinite set to have a limit point. Bolzano-Weierstrass The-

orem 1s one of the most fundamental theorem in real analysis and is closely
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related to Heine- Borel Theorem and Cantor’s Intersection Theorem, each of

which can be easily derived from either of other two.

0.

(17.5) Lesson End Exercise

Give one example of each of the following:

~

. An infinite set having no limit point.

NS

. An infinite set having one limit point.
3. A set having two limit points.
4. A set having infinite number of limit points.

5. A set every point of which is a limit point.

D

. A set with only V3 as a limit point.
7. A set with only 0 as limit point.

8. A unbounded subset of R with limit points.

Find the derived set of each of the following:
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d. {r 2:7“6@}

Sol.i.
. N, Z are infinite sets having no limit point.
. The set {%, n e N} has only one limit point 0.
. The set {%,n € N} U {1 + %,n € N} has two limit points 0 and 1.
. The sets Q, R, [1,2],(2,3) have infinite number of limit points.

1

2

3

4

5. Every point of R, [1,2] is a limit point.

6. The set {\/3 + %, n e N} has only V/3 as a limit point.

7. The set {% 'n € N} has only 0 as a limit point.

8. The set Q of rational numbers is a subset of R which is unbounded but each

point of R is a limit point of Q.

For any re Q, we have € > 0 such that
(r—er+e¢NQ#¢o

Sol. 1.

a. Let x be any real number.

If i1, then for 0 <e <1 —x,

(x —€e,x4+¢€)N(1,00) = ¢.

= any real number | 1 is not a limit point of (1,00).

If v € [1,00), then for every e > 0, (x —€,x+€), contains infinitely many
points of (1,00) to the right of 1.

= every element of [1,00) is a limit point (1,00).

b. Do yourself. c. Let S:{ﬂ}

When n is odd,
LHEDT g,

n
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When n is even,
(=" 2

n n

Therefore, S= {0} U {L:n e N} C[0,1]

Clearly, S = {0}.

d. Let S= {T\/EZT € Q} Let x be any real number, then for each ¢ >
0, (x—¢€,x+¢€)is anbd.of .

Nowzxr—e<x+e

T—€ T+e€
= % <5

Since between any two distinct real numbers, there are infinitely many rational

numbers, therefore there exists infinitely many rational numbers r such that

z—¢ zte
\/§<T<\/§

= r—e€< r\/§ <r+e
= (x —e,x 4+ €) NS, contains infinitely many points of S.
=z s a limit point of S.

Since x is arbitrary, therefore ' =R

(17.6) University Model Questions

1. State and prove Bolzano- Weierstrass Theorem.
2. Show that every infinite bounded set in R has a limit point.

3. In each situation below, give an example of a set which satisfies the given

condition.

a. A bounded set with no limit point.
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b. An unbounded set with no limit point.
c. An unbounded set with exactly five limit points.

d. A set whose derived set is whole of real line.
4. Define derived set. Show that the derived set of a set is a closed set.

5. Show that if x has a nbd. which contains only finitely many members of

a set S, then x cannot be a limit point of S.

6. Is it true that if A and B are subsets of R then (AN B)l =AnNB?
Justify.

7. Prove that a finite set has no limit points.

(17.7) Suggested Readings

1 T. M. Apostol, Calculus (Vol. 1), John Wiley and Sons (Asia) P. Ltd.,
2002

2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international
Publishers, 2010.

3. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wi-
ley and Sons (Asia) P. Ltd., 2000.
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Unit-V

Lesson-XVIII Metric Spaces
18.0 Structure

18.1 Introduction

18.2 Objectives

18.3 Metric Spaces

18.3.1 — 18.3.2 Definitions

18.4 Exzamples

18.5 Let Us Sum Up

18.6 Lesson end exercise

18.7 Unwversity Model Questions
18.8 Suggested Readings

(18.1) Introduction: In the theory of real variables, we had learnt limit, the
notion of distance which played important role in defining continuity, conver-
gence and differentiability. In this lesson, we will introduce the generalised
notion of distance on arbitrary set called metric space and illustrate it with
examples.

(18.2) Objectives: The students will understand how can one define distance
on any arbitrary set and generalization of notion of distance between two points
of a set.

(18.3) Metric Spaces

(18.3.1) Definition: Let X be any set. Then a function

d: X xX — R s said to be a metric if

() d(z,y)>0,Vz,y e X [Non-negative Property]

(i1) d(z,y) =0 =y

(i13) d(z, y) = d(y, x),V x,y € X [Symmetry]
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(iv) d(z, y) < d(z, 2) +d(z, y), ¥V x,y, z € X [Trianle Inequality].

The set X with a metric d is called a metric space. It is denoted by (X, d).
(18.3.2) Definition: Let X be any set. Then a function

d: X x X — R is said to be a pseudometric if

(1) d(z,y) >0, Vo, y € X [Non-negative Property]

(17) d(z, y) =d(y, x),Vz,y e X [Symmetry]

(i73) d(z, y) < d(x, z) +d(z, y), V z, y, z € X [Trianle Inequality].

Note: Fvery metric space is pseudo-metric but the converse need not be true.
Some Results:

(i) The absolute value function satisfies the following properties

2] 20, 2| =0 =2 =0, o] = | —z|, [t +y| < |z| + |y, Vo, y € R.

(ii) If w and v are complex numbers, then

_lutv] |ul Kl
Ju+ o] < ul + |v; < :
I+ jut+v] = 1+ ul 14|

111) Cauchy-Schwartz Inequality: Let © = (xq, 29, ..., x,) and y =
i) Cauchy-Schwartz 1 lity: L d
(Y1, Y2, - - -, Yn) be any two n-tupple of complex numbers. Then
n " /2 s 1/2
> lant < (lat) (S
i=1 i=1 i=1
w inkowski’s inequality: et x = (x1,T2, ..., x,) and y =
w) Minkowski’s i lit L d
(Y1, Y2, -+, Yn) be any two n-tupple of complex numbers. Then
n 1/p n 1/p n 1/p
(Stcvur) = (tar) o (L) oz
i=1 i=1 i=1

(18.3) Examples
1. Let X =R, the set of real numbers. Show that the function d : R x R — R

defined by d(z, y) = |x —y|, Vz, y € R is a metric on R.
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Solution. We have (i) |t —y| > 0,Vz,y € R

=d(z,y) >0V, z,yeR

(ii)|lr —y| =0 2r—y=0a2=y sothatd(z,y) =0 =y

(i) |x —y| =y —z|Vo,y e R=d(x,y) =d(y, z)Vz,y € R

(iv) |o—yl = [(m = 2)+ (z —9)| < |o — 2| + ]2 — y|Va, y, 2 € R

= d(z,y) <d(z, z)+d(z,y)Vz, y, z € R.

Hence from (i)-(iv), it follows that d is a metric on R.

Note: This metric d on R s known as usual metric on R and the metric
space (R, d) is known as the usual metric space.

2. Let X be a non-empty set and define a mapping d : X x X — R as

L ifx#y
d(x, y) = Vr,ye X

0 ifex=y
Then show that d is metric on X.
Solution. We have (i) d(z, y) > 0, by definition of d.
(i1) d(z, y) = 0 < x =y, by definition
(i1i) If x =y, then d(x,y) = 0 = d(y, x) and if ¢ # y, then d(z,y) =1 =
d(y, x). Hence d(z, y) =d(y, x)Vz, y € R
(iv) Let x,y, z be any elements in X. If x = y, then d(x,y) = 0. Also
d(z, z) >0 and d(z,y) >0
Hence d(z, y) < d(z, z) + d(z, y)
If x # vy, then either x £y # z orx #y = 2.
then either d(z, y) = d(z, z) = d(z, y) =1
ord(xz,y)=d(z, z) =1 and d(y, z) =0
Hence in both situations, d(x, y) < d(x, z) + d(z, y)
Thus,

d(z,y) <d(z, z) +d(z, y)Vz,y, z € X.
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Hence d is metric on X and (X, d) is metric space.
Note: The metric space (X, d) so defined is known as discrete metric space.

3. Let X = R? and d : X x X — R be defined by d(z,y) =

V(@ — )2 + (22 — y2)? where x = (21, 22) and y = (y1, y2). Then show

that d is a metric on X.

2

Solution. (i) Since (1 — y1)? and (xo — y2)* are non-negative real numbers,

we have

V@ —y)? + (23— 1) > 0= d(z, y) > 0

(ii) d(z, y) = 0 & /(21 — y1)? + (22 — y2)? =
& (v —y1)> =0 and (xg —y2)* =0
Sy =1y, and T = Yo
© (21, 22) = (Y1, o) © T =y.
(iii) d(z, y) = \/(x1 = 11)? + (22 — y2)?
=/ (y1 —21)? + (42 — 22)?
=d(y, x) = d(z,y) =d(y, v)V, z, y € X.
(i) d(z, y) = {(x1 —y1)* + (z2 — y2)*}'/*
= {{(z1 = 20) + (21 =y + {22 — 22) + (22 — y2) I}/
To show that {(z1 —y1)* + (zo —y2)2 /% < {(21 — 21)? 4 (22 — 22)?}/2 4+ {(21 —
)? + (22— o) 2
Let oy =21 — 21, Qg = Tg — 29, 1 = 21 — Y1, P2 = 22 — Ya.
Then d(x, 2) = V12 + a? and d(z, y) = VB2 + B2
Now, d(z, y) = /(21 — y1)2 + (22 — 32)?
= V(@1 — =) — 1)) + (22 — 22) + (22 — 12))?
= /(a1 + $1)? (% + B2)2.
Now d(x, y) < d(z, z) + d(z, y)
o (o + B2+ (£ B2 < VarZ + a2 + VB2 + Bo°
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& (o1 + £1) + (a2 + B)?

< on? a4+ B4 B 4 24/ (0n2 + a?) (i + o)

& 20061 + 20282 < 20/ 012B1” + 12’ + a2B1” + a2

& 4(a1fy + azfa)? < A6 + a2’ + 2?81 + i’ )

& 8oy fBa < AP + a2 B17)

& (a1 — aB1)? > 0 which is always true.

Therefore, = d(x, y) < d(z, z) + d(z, y).

Hence from (i)-(iv), it follows that d is metric on R2.

4. Let X =R" and d: X x X — R be defined by d(z, y) = {(x1 —y1)* + (22 —

Y2) 2+ (T — )Y where x = (21, 29, ..., Tn) andy = (Y1, Yo, -5 Yn).
Then show that d is a metric on X.
Solution. (i) Since (x1—y1)?, (xa—y2)?, ..., (¥, —yn)? are non-negative real

numbers, we have
{1 =9 + (@ =)’ + .+ (20— 92)*}? > 0= d(z, y) > 0

(i) d(z, y) =0 {(x1 — 11)> + (T2 — 12)> + ... + (T0 — yn)2}/2 =0

<=>(5E1—yl)2:07 (m2_y2)2:oa"'7(l‘n_yn)220
< X1 =Y, -y Tn = Yn
S (1, xo, ooy mn) = (Y1, Y2, -, Yn) S T =Y.

(iii) d(z, y) = {(z1 = y1)* + (22 — 2)* + ... + (20 — ya)?}'/?

= {1 =2’ + (g2 — 22’ + ..+ (Yo — 2a)*}?

=d(y, x) = d(z,y) =d(y, v) V¥, z, y € X.
{(@1—y)? + . 4 (20— ya)*}?

= {@m —2) + @ -y 4 = ) + (20— ) 3
<@ =2+ (@ = z) P2 {2 =)+ ()

by Minkowski’s inequality
= d(z, y) <d(z, z) +d(z, y).
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Hence from (i)-(iv), it follows that d is metric on R™ and (R™, d) is a metric
space.

5. If d is a metric space on a non-empty set X then prove that the function
di(z, y) = min{1, d(z, y)} Vo, y € X

15 a metric on X.
Solution. We have (i) d(z, y) > 0V, y € X
= min{l, d(z, y)} >0
= dy(z, y) > 0.
(i1) di(z, y) =0 < min{l, d(z, y)} =0 < d(z,y) =0z =y.
(iti) di(z, y) = min{1, d(z, y)} = min{1, d(y, =)} = di(y, ).
(iv) We have to prove that dy(x, y) < di(z, 2) + di(z, y)
For this, if d(z, z) =1 and d(z, y) = 1, then the result follows obviously.
Suppose that d(z, z) < 1 and d(z, y) < 1.
Then dy(x, z2) + di(z, y) = d(z, z) + d(z, y)
> d(z, y) 2 min{l, d(z, y)} = di(z, y)
= di(z, y) < di(z, 2) + di(z, y).
Thus from (i)-(iv), it follows that dy is metric on X and (X, dy) is a metric
space.

6. Let (X, d) be any metric space. Show that the function dy defined by

d(z, y)
= ——
di(z, y) T+d ) Va,ye X

18 a metric on X.

Solution. Since, (X, d) be a metric space.

Therefore (i) d(x, y) > 0 = 11(5(’9%) > 0= di(z,y) >0.

(i1) di(z, y) = 0 < 11(;(;%) =0<edry=0cz=y.

d(z, d(y,
(i) dy(z, y) = 1+(d(ac1{)y) - 1+Eiy(y,z,,-) = di(y, ).
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(iv) For the triangle inequality, we proceed as follows:
Using the triangle iequality of metric d, we have
d(z, y) < d(z, 2) +d(z, y)

14+d(z, y) <1+d(z, z) +d(z, y)
1 1

= 1+d(z, y) 2 1+d(z, 2)+d(z,y)
1 1
=l -y S 1~ Taeraey
- d(z,y) d(z, z) d(z,y)

Trd(z,y) = Td@,=)+dzy) | TTd(, 2)+d(0)
di(z, y) < di(z, 2) + du(2, y).
Therefore from (i)-(iv) it follows dy is a metric on X.
7. Let X = R2. Then show that a mapping d : X x X — R defined by
d(z, y) = |z1 — 11| + |x2 — y2|, where x = (x1, x2), y = (y1, y2) is a metric on
X.
Solution. We have (i) |z1 —y1| > 0, |23 —y2| >0
= |r1 — 1| + w2 —y2| > 0= d(x, y) > 0.
(it) d(z, y) = 0= |z1 — | + 22 —yo| =0 = |21 — 91| =0, |z2 — o[ =0
= X1 = Y1, T2 = Yo
=T =Y.
(i) d(z, y) = |21 — 1| + |w2 — g2| = [y1 — 21| + |y2 — 22| = d(y, 2).
(iv) d(z, y) = [z — 1| + |w2 — 32
= |(z1 = 21) + (21 = wo) | + (22 — 22) + (22 — 12)
< (@1 =2+ (2 =y + (22 = 22)[ + (22 — 12)]
< (I(z1 = 20) + (w2 = 22)1) + (J(22 — w2) [+ [(z2 = 1))
<d(z, z) +d(z,y) = d(z,y) <d(z, z)+d(z, y).
Hence from (v)-(iv) it follows that d is a metric on R2.
(18.4) Let Us Sum Up: In this lesson we have described the notion of

distance on any set called metric and illustrated with the help of different ex-
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amples. We have observed that the metric on any set is not unique.

(18.5) Lesson end excercise

1. Let X = R2% Show that the mapping d : X x X — R defined by d(x, y) =
max{|r; — y1|, |T2 — yo|} V& = (21, 2), y = (y1, y2) is a metric on X.

2.Let X = C be the set of complex number and let d : X x X — R be defined
by d(z1, z2) = |21 — 23], Y21, 20 € X. Prove that (X, d) is a metric space.

3. Let X = R. Then show that a function d : X x X — R defined by
d(z, y) = min{2, |x — y|} is a metric on X.

4. Let R be the set of real numbers. Show that the function d : R x R — R
defined by d(x, y) = |22 — y?|, V 2, y € R is pseudo-metric on R which is not
a metric on R.

Hint: Here (i) |2 —y?*| > 0= d(z, y) > 0Vz, y € R.

(ii) d(x, z) = |#* —2?| = 0Vz € R

(i) d(z, y) = |2 = y*| = |y* = 2?| = d(y, 2) V2, y € R

(iv) d(, y) = 22 — 4| = [(2® = 22) + (22 — )] < [o® — 22| 4 |22 — 2]
=d(z,y) <d(z, z)+d(z,y)Vz, y € R.

This shows that d is a pseudo-metric on R.

Now we shall show that d is not a metric on R.

For this, we have d(z, y) =0 = [2*—¢y?*| = 0= 22—y = 0=y = +z or —u.
This shows that d(x, y) = 0 does not always imply © = y.

Hence, the function d is not a metric on R.

5. Let X be the set of all continuous real- valued functions defined on [0, 1],
and let

d(z, y) = /0 o(t) — y(O)|dt, Yz, y € X.
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Show that (X, d) is a metric space.
6. Let X be the set of all continuous real- valued functions defined on [a, b,

and let
b
A(f, g) = / (@) — gla)| dt, ¥ f. g € X.

Show that (X, d) is a metric space.

(18.6) University Model Questions

1. Define metric space. Illustrate this one example.

2. Let X = R? and d : X x X — R be defined by d(z,y) =

V(r1—y1)? + (x2 — y2)? where © = (z1, x2) and y = (y1, y2). Show that d
15 a metric on X.

3. Let X = C|0, 1] be the space of all continuous real valued function on [0, 1].
Show that the function d : X x X — R defined by

d(f, g) = sup{|f(z) —g(z)| : x € [0, 1]}

18 a metric on X.

4. Let mapping d : R x R — R be defined as d(z, y) = % Prove that d
1s a metric on R.

(18.7) Suggested Readings: Shanti Narayanan, M. D. Raisinghania; El-
ements of Real Analysis, S. Chand and Company Puvt. Ltd Ramnagar New

Delhi-110055.
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Lesson-XIX  Open and Closed Sets in a metric space

19.0 Structure

19.1 Introduction

19.2 Objectives

19.3 Open and Closed Sets

19.3.1 — 19.3.2 Definitions

19.4 Open sets

19.4.1 Definition

19.4.2 — 19.4.4 Theorems on open sets
19.5 Closed Set

19.5.1 — 19.5.3 Definitions

19.5.4 — 19.5.6 Theorems on closed sets
19.6 Examples

19.7 Let Us Sum Up

19.8 Lesson end ezercise

19.9 Unaversity Model Questions
19.10 Suggested Readings

(19.1) Introduction: As we are familiar with open and closed intervals in
real line, similarily we can talk of open and closed sets in any set with metric.
In this lesson, we shall defined open and closed sets in any metric space.
(19.2) Objective: The students will learn the generalisation of open and
closed intervals in the real line in the form of open and closed sets in any
metric space and their properties.

(19.3) Open and Closed Sets

(19.3.1) Definition( Open sphere (or Open ball): Let (X, d) be a metric
space and a € X be any point. Then the set {x € X|d(a, x) < r,r > 0} is

199



called an open sphere (or open ball) with centre at a and readius r. It is denoted
by S(a, r).

(19.3.1) Definition( Closed sphere (or closed ball): Let (X, d) be a
metric space and a € X be any point. Then the set {x € X|d(a, ) <r, r >0}
is called a closed sphere (or closed ball) with centre at a and readius . It is
denoted by S|a, r].

Example. For the usual metric space (R, d), the open sphere S(a, r) is the
open interval (a — 1, a + 1) and the closed sphere S|a, r] is the closed interval
l[a — 1, a+ 1] where a € R and r > 0.

(19.3.2) Definition (Neighbourhood of a point). Let (X, d) be a metric
space. A set N C X 1is said to be a neighbourhood of a point a € X if there
exists some r > 0 such that S(a, r) C N.

Example Let (R, d) be a usual metric space. Then open interval (a, b) is a
netghbourhood of each of its points.

(19.4) Open Sets

(19.4.1) Definition (Open Set): Let (X, d) be a metric space. Then a set
G C X is said to be open if it is a neighbourhood of each of its points.
Example Let (R, d) be a usual metric space. Then the open interval (a, b) is
an open set in R.

For this, let x € (a, b) be any point. Choose r < |x —a| and r < |b—x|. Then
(x—r,z4+7r)C(a,b)

= (a, b) is a neighbourhood of x. Since x was an arbitrary element of (a, b).
Therefore (a, b) is a neighbourhood of each of its points. Thus (a, b) is an
open set.

(19.4.2) Theorem. FEvery open sphere is an open set but the converse need

not be true.
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Proof. Let S(a,r) be an open sphere in a metric space (X, d). Then we
have to show that S(a, r) is an open set. For this, let v € S(a, r). Then
d(a, ) <r. Now, choose r' =r —d(a, x).
Claim: S(z, r") C S(a, 7).
For this, let y € S(xz, 1"). Then d(x, y) <1’
Now d(a, y) < d(a, x) +d(z, y)

<d(a, x)+7

=r
= d(a, y) < r. Therefore, y € S(a, r). Hence S(x, r') C S(a, r). This shows
that each point of S(a, r) is the centre of open sphere contained in it and so
S(a, r) is an open set.
For the converse, let (R, d) be a usual metric space. Then (1, 2)U (2, 3) is an
open set but not open sphere.
(19.4.3) Theorem. Let (X,d) be metric space. A subset of X is open if and
only if it is a union of open spheres.
Proof. Let A be an open subset of X. Then, for each x € A, there exists a
real number r, > 0 such that x € S(z, r,) C A. Then A C U{S(z, r;)|z €
A} C A
Therefore

A = UgeaS(z, ry).

This shows that A is union of open spheres.

Conversely, suppose that A = UgeaS(x, 1) and let y € A be any element.
Then y € S(a, r) for some a € A. Since every sphere is open set, so y is the
centre of some open sphere S(y, r') such that S(y, r') C S(a, r).......... (1)
Also, S(a, r) C A........ (2)

Thus from (1) and (2) we have S(y, ') C A. This shows that A is a neigh-
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bourhood of y. Since y was an arbitrary element of A. This implies that A is
a neighbourhood of each of its points. Hence A is an open subset of X.
(19.4.4) Theorem. Let (X, d) be a metric space. Then

(1) ¢ is open (17) X is open

(731) the union of arbtrary collection of open sets is open.

(1v) the intersection of finite number of open sets is open.

Proof. (i) To prove that ¢ is open set we have to prove that ¢ is a nbd of
each of its points. Since ¢ has no point so the definition of open set for ¢ is
automatically satisfied. Hence ¢ is open set.

(17) Let x € X be any element. Then every open sphere S(x, r) is contained
in X. Therefore, X is a nbd of each of its points and X is open set.

(i11) Let {Gq|a € A} be any arbitrary collection of open sets in a metric space
X and G = UpeaGo. To show that G is open set, let x € G. Then x € Gy, for
some X\ € A. Since G is open, so there exists v > 0 such that S(x, r) C G,.

This implies that S(x, r) C Gy for some A € A.
= S(ZE, ’I") C UxeaGi.

Hence G is open set.

(iv) the intersection of a finite number of open sets is open.

Proof. Let {G;li = 1,2,...,n} be a finite collection of open subsets of X.
We wish to show that N}_1{G;} is an open set. For this, if "' {G;} = ¢, then
by (i) N, {G;} is open.

Now, iof N'_,G; # ¢, let v € N G; be any point. Then x € G;, V i.
Since, each G; is open, so there exists r; > 0 such that S(x, r;) C G;, Vi =
1,2, ) e (1).

Let r = min{r;|i =1, 2, ..., n}. Then by (1),

we have S(x, r) C S(x, r;),Vi=1,2,...,n
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= Sz, r)CG,Vi=1,2,...,n

= S(z, r) C N, G;. This shows that NI, G; is a nbd of each of its points.
Hence N}'_G; is an open set.

(19.5) Closed sets

(19.5.1) Definition (Limit Point): Let (X, d) be a metric space and S C X.
Then a point p € X 1is said to be a limit point of S if every nbd of p contains
atleast one point of S different from p. In other words, a point p € X is said
to be a limit point of the subset S C X if for each r > 0, the open sphere
S(p, r) contains a point of S other than p i.e. S(p, r) NS —{p} # ¢.
(19.5.2) Definition (Derived Set): The set of all limit points of a set
S C X s called derived set and is denoted by S’ or D(S).

(19.5.3) Definition (Closed Set): A subset K of a metric space (X, d) is
said to be closed if K contains all its limit points.

(19.5.4) Theorem. Let (X, d) be a metric space. Then a subset K C X is
closed if and only if K¢ the complement of K is open.

Proof. Let us first suppose that K is closed set. We shall show that K€ is
open. For this, if K¢ = ¢, then there is nothing to prove because ¢ is open set.
Now, we assume that K¢ # ¢. Let x € K¢ be any element. Then z ¢ K and
K is closed = x is not a limit point of K

= there exists r > 0 such that S(z, r) N K = ¢

=zeSx,r) CK°

= K¢ is open.

Conversely, suppose that K¢ is open set. Then we have to show that K is
closed. For this, let x € K¢, then there exists r > 0 such that S(x, r) C K¢ =
S(x, r)NK = ¢

= x is not a limit point of K
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= K contains all its limit points

= K s closed.

(19.5.5) Theorem. Fuvery closed sphere is a closed set in a metric space
(X, d).

Proof. Let Sla, r| be a closed sphere with centre at a and radius r. Let
G = X — Sla, r|, be the complement of Sla, r]. If G = ¢, then G is open set
and hence Sla, r| is closed set.

Now assume that G # ¢. Let x € G. Then d(a, x) > r, let v’ = d(a, ) —r =
" > 0. Now, to show that G is open, we shall show that S(z, ") C G.

For this, let y € S(z, 1) be any element. Then d(x, y) <1’

= d(z, y) <d(a, x) —r

=r<da,z)—dx, y).. ... ()

Now we know that d(a, z) < d(a, y) + d(y, x) (Trianle inequality)

= d(a, ) — d(x, y) < d(a, y), Using this in (x) we get,

r <d(a,y) =y e G. Hence S(x, r') C G. This shows that G is open set and
Sla, r] is a closed set.

(19.5.6) Theorem. Let (X, d) be a metric space. Then

(1) ¢ is closed (11) X is closed

(131) The intersection of arbitrary family of closed sets is closed.

(iv) The union of finite family of closed sets is closed.

Proof. (i) We have ¢¢ = X, which is open set. This implies that ¢ is closed
set.

(1) X¢ = ¢ which is open set. This implies that X is closed set.

(1ii) Let {K,la € A} be an arbtrary collection of closed subsets of X and
K =NgeaK,.
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Now
K= (maEAKOc)C = UaEAKaC

which is open (because each K, is closed set and each K, is open). Then
by Theorem (19.4.4)(iit) it follows that K¢ is open set = K is closed set.
Therefore, any intersection of closed sets in a metric space is closed.
() Let {K;li = 1,2,3,...,n} be finite family of closed subsets of metric
space X and K = U} K;. To show that K 1s closed, we have to show that K°
1S open.
For this, we have K¢ = U} K;°

= N, K;° which is open by Theorem (19.4.4)(iv) because K;  is
open set for each i. Hence K, the finite union of closed sets in a metric space
X s closed.
(19.6) Examples
1. Find the open sphere S(0, ) in metric space (R, d).
Solution. By definition S(0, 3) = {z|z € R and d(z, 0) < 3}

N[ —=

={z|r € R and |z| < %}

={zlr eR and — 3 < i} =(—3,

).

D=

2. Describe open sphere for discrete metric space.
Solution. Let (X, d) be a metric space. Then

1 frx#y
d(z,y) = Va,ye X.

0 ifz=y
Let a € X be any element and r > 0 be a real number. If r < 1, then r =0
(because d(z, y) has only two values 0 or 1)
and d(a, v) <r = a=xz. Therefore, S(a, r) = {a}.
If r > 1, then S(a, r) = {z|x € X and d(a, ) <r} = X. Further, ifr =1,
then S(a, r) = {z|z € X and d(a, r) < 1} = {a}.

205



3. Describe open spheres (balls) of radius r and centre a in
(1) Usual metric space (R, d)
(i1) Usual metric space (R?, d)
(iit) Usual metric space (R?), d
(1v) Discrete metric space (R, d).
Proof. (i) The required open sphere in the usual metric space (R, d) is given
by S(a, r) = {z|x € R and d(a, ) < r}
={z|lzr €eR and |z —a| <1}
={zlzreRanda—r<z<a+r}
=(a—r,a+r).
(ii) Here d(z, y) = \/(z1 — 22)2 + (y1 — 12)2,
where v = (x1, y1), y = (22, y2). Therefore
S(a, r) = {(z1, y1) € R}/ (21 — a1)> + (y1 — az)? <1}
= {(z1, y1) € R*(z1 — a1)* + (y1 — a2)?® < 1}, which is the required

open sphere. Hence open sphere S(a, r) is the interior of circle with centre at
a = (ay, az) and radius .
(i4i) Here d(x, y) = /(1 — 22)2 + (y1 — 42)2 + (21 — 22)2,
where x = (x1, Y1, 21), Y = (X2, Yo, 22). Therefore S(a, r)
= {(z1, y1, 21) € R¥|\/ (21 — a1)? + (41 — a2)? + (21 — a3)? < 7}
= {(z1, 11, 21) € R*|(x1 — a1)* + (1 — a2)? + (21 — a3)® < r?}, which is

the required open sphere. Hence open sphere S(a, r) is the interior of sphere

with centre at a = (ay, ag, az) and radius r.
(1v) Here
1 ifz#y
d(z,y) = Vz,yeR.
0 ifx=y

We have two cases:
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Case I: when r > 1, then the open sphere with centre a € R and radius r is
given by

S(a, r) =A{z|r € R and d(a, z) <1} =R.

Case II: when 0 <r <1,

then S(a, r) = {z|z € R and d(a, x) <1} = {a}.

Therefore, the only open spheres in a discrete metric space (R, d) are singelton
sets or whole space.

4. Let (R, d) be the usual metric space. Then every open interval is an open
set in (R, d) where as singleton set is not open.

Solution. Let (a, b) be an open interval, where a, b € R and a < b. To show
that (a, b) is an open set, we have to show that there exists an open shpere
with centre at each point of (a, b) and radius r contained in it. For this, let
x € (a, b) be any point. Choose r = min{|z — al, |b — x|}. Then there exists

an open sphere

S(a, r) C (a, b).

Hence every open interval in usual metric space is open set.

Now, let {z} be a singelton set in usual metric space (R, d). Since every open
sphere 1n usual metric space is an open interval, so any open interval centred
at x is S(z, €) = (x — €, x + €), where € > 0 however small.

But S(x, €) = (x — ¢, x +€) ¢ {x}. Therefore, {x} is not open set = every
singelton in usual metric space is not open set.

5. Let (R, d) be the usual metric space. Then every closed interval is a closed
set in (R, d).

Solution. Let I = [a, b] be a closed interval in the usual metric space (R, d).
Then I° =R —1 = (—00, a) U (b, 00), which is an open set (because the union

of open sets is open).
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Hence [a, b is a closed set.

(19.7) Let Us Sum Up: In this lesson, we have defined the concepts of
open(closed) spheres (or balls), open sets and closed sets. Then the properties
of open and closed sets have been discussed. Further, all the concepts have

been illustrated with examples.

(19.8) Lesson end Exercise

1. Show that every singelton set on the real line with usual metric is closed
set.
2. Prove that every set in a discrete metric space is an open set.

3. Prove that every set in a discrete metric space is an closed set.

(19.9) University Model Questions

1. Define open set in a metric space. Prove that every open interval in a usual
metric space (R, | |) is an open set.

2. Define closed set in a metric space. Prove that every closed interval in a
usual metric space (R, | |) is an closed set.

3. Prove that every finite set in a metric space (X, d) is closed set.

Hint: Let us first show that every singelton set {x} is closed in the metric
space (X, d). For this, let G = {x}°. If G = ¢, then G is obviously open set
and {x} is closed.

If G # ¢, then there ezists y € G = x # y. Let r = d(z, y). Then there exists
an open sphere S(y, r1), wherery < r = x ¢ S(y, r1). For thisifx € S(y, r1),
then d(x, y) < ry <r, a contradiction to the fact that d(x, y) = r.
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Therefore, S(y, r1) C {x}°

= {x}¢ is open set. Hence {z} is closed in X. Therefore, {x1, xa, ..., x,} =
U {x;}, which is a finite union of closed sets. Hence every finite set is closed
in (X, d).

4. Show that every closed sphere in a metric space is closed set.

(19.10) Suggested Readings: Shanti Narayanan, M. D. Raisinghania; El-
ements of Real Analysis, S. Chand and Company Puvt. Ltd Ramnagar New
Delhi-110055.
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Lesson-XX Interior, Closure and Boundary of a Set

20.0 Structure

20.1 Introduction

20.2 Objectives

20.3 Interior, boundary and closure of a set
20.3.1 — 20.3.5 Definitions

20.4 Examples

20.5 Let Us Sum Up

20.6 Lesson end ezercise

20.7 University Model Questions

20.8 Suggested Readings

(20.1) Introduction: In a metric space (X, d), it is interesting to study the
properties of its subsets i.e, interior , exterior, frontier and boundary points of
a set. By knowing these properties of a subset of a metric space, we can derive
openness and closedness of a set.

(20.2) Objectve: The students will learn to compute explicitly the interior,
extrerior, frontier, and boundary points of a set in a metric space.

(20.3) Interior of a set

(20.3.1) Interior point of a set (Definition): Let (X, d) be a metric space
and A C X. Then a point a € A is said to be an interior point of A if there
exists r > 0 such that S(a, r) C A.

The set of all interior points of a set A is called the interior of A and is
denoted by A°.

Note: A° C A.

(20.3.2) Exterior point of a set (Definition): Let (X, d) be a metric space
and A C X. Then a point x € X is said to be an exterior point of A if there
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exists r > 0 such that S(a, r) C A°.

The set of all exterior points of A is called exterior of the set A and is
denoted by ext(A) or (A°)°.

(20.3.3) Frontier point of a set (Definition): Let (X, d) be a metric space
and A C X. Then a point x € X is said to be a frontier point of A if it is
neither interior point of A nor an exterior point of A. The set of all frontier
points of a set A is called frontier of A and is written as Fr(A).

Note: Fr(A) =X — A°Uext(A).

(20.3.4) Boundary point of a set (Definition): Let (X, d) be a metric
space and A C X. Then a point x € X 1is said to be a boundary point of A
if v € A and x is frontier point of A. The set of all boundary points of A is
called boundary of A. It is denoted by b(A) or bd(A).

(20.3.5) Adherent point (Definition): Let (X, d) be a metric space and
A be a subset of X. Then a point x € X is said to be an adherent point of A
if each open sphere centered at x contains atleast one point of A.

The set of all adherent points of A is called closure of A. It is denoted by A.
(20.3.6) Theorem. Let (X,d) be a metric space space and A C X. Then
(i) A° is the union of all open subsets of A.

(i) A is open set if and only if A° = A.

(iii) If A, B C X such that A C B, then A° C B°

(iv) A° is the largest open set contained in A.

Proof. (i) Let x € A°. Then there exists r, > 0 such that S(z, r,) C A.
Since each open sphere is open set. Therefore, for each y € S(x, r,) there
exists r, > 0 such that S(y, r,) C S(x, r,) C A i.e S(y, r,) C A. Therefore,
each point of S(x, r,) is an interior point of A

= S(x, ry) C A° Vx € A°
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= UgeaoS(x, 1) CT A%l (1)
Also, let v € A° = x € S(z, 1)
= & € UgenoS(x, 172)

= A° C UgeaoS(x, 72)eeeenenn. (2)
From (1) and (2), we get

A° = UgeaoS(x, 1p).

(i1) First, we suppose that A is open set. To show that A° = A. For this, we
have A° C A.
Now, since A is open set, so A = U,caS(x, rp). Lety € A, theny € S(x, r,),
for some x € A
= there ezists r, such that S(y, r,) C S(z, ry) C A
= S(y, ry) C A. Therefore, y is an interior point of A i.e y € A°
= A C A°. Hence A = A°.
(iv) Let x € A°. Then x is an interior point of A
= there exists r, > 0 such that S(z, ;) C A.
But AC B
Therefore S(x, r,) C B
= x is an interior point of B
=z e b’
= A° C B°.
(iv) By (i), we have
A° = UpenoS(z, 1)
which is any union of open spheres and each open sphere is open set. So, A°
18 open set.

To show that A° is the largest open set, let B be any open set contained in A.

Then B° = B by (ii)
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Now B C A

= B° C A°

= B C A°. This shows that A° is the largest open set contained in A.
(20.3.7) Theorem. Let (X, d) be a metric space and let A, B C X. Then
(i) A°UB° C (AU B)°(ii) (AN B)° = A°N B°.

Proof. (i) Since AC AUB and BC AUB

= A° C (AUB)° and B° C (AU B)°.

Taking union, we get A° U B® C (AU B)°.

(ii) Since ANB C A and ANBCB

= (AN B)° C A° and (AN B)° C B°

Taking intersection, we get

(ANB)° C AN B°..ccc (1)

Since A° C A and B° C B.

So, A°NB°C ANB

= (A°NB°)° C (AN DB)°

= A°NB°C (AN B)°........... (2).

Therefore, from (1) and (2), we get (AN B)° = A°N B°.

(20.3.8) Theorem. Let (X, d) be a metric space and A C X. If x is an

interior point of A, then
d(xz, A) = glb{d(x, y) : Yy € A} =0.

But the converse is not true.

Proof. We have x € A° and A° C A

=z cA

Now d(z, A) = glb{d(z,y) : Yy € A}. Also d(xz,y) > 0,Vy € A and
d(xz,x) =0 as x € A. Therefore 0 € {d(x,y) : Vy € A}

= glb{d(z,y) : Vy e A} =0.
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Hence d(z, A) =
For the converse, consider (R, d) be the usual metric space and A = (0, 1) be
its subset.
Then d(0, A) = glb{d(0, y) : Yy € A}
= d(0, A) = glb{|0 —y| : Yy € (0, 1)}
= d(0, A) = glb{[y| : Vy € A}
Nowte A, VneNandd0, 1) =0—-2[=2 = 0asn— o0
Therefore, glo{ly| :Vye€ A} =0 i.e d(0, A) =0 but 0 ¢ A.
(20.3.9) Theorem. Let (X, d) be a metric space and A, B be any subset of
X, then
(i) ext(p) = X (i1) ext(X) = ¢ (i17) ext(A) C A°
() If A C B, then ext(B) C ext(A)
(v) ext(AU B) = ext(A) Uext(B).
Proof. (i) ext(¢) = (¢°)° = X° = X (because the largest open set contained
in X is X ).
(i) ext(X) = (X = ¢° = o,
(1i1) ext(A) = (A°)° C A“.
(iv) Since AC B = B C A°
= (B%)? C (A)°
= ext(B) C ext(A).
(v) ext(AU B) = ((AU B)°)°
= (A°N B°)°
— (A°)° N (B°)°
= ext(A) Next(B).
(20.3.10) Theorem. Let (X,d) be a metric space and A C X then prove
that (i) ACA (it) A’ CA (iii) A=AUA
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(iv) A is closed set. (v) A is closed if and only if A = A.

(vi) A is the smallest closed set containing A.

(vii) A is the intersection of all closed supersets of A.

Proof. (i) Let x € A.

Then S(x, r) N A # ¢ for any real number r > 0

= x s adherent point of A

=1 € A.

Therefore A C A.

(17) Let x € A'. Then x is a limit point of A

= S(z, r)NA—{x} # ¢ for eachr >0

= S(z, r) N A # ¢ for each real r > 0

= x is an adherent point of A

= 2 € A. Therefore A’ C A.

(#3i) From (i) and (ii) we have A C A and A C A’

= AUA CA..... (1)

Now, we claim that A C AU A'.

For this, let x € A. Suppose that v ¢ AU A’

=z ¢ Aandax ¢ A

=z ¢ A and there exists a real number r > 0 such that S(z, r)NA = ¢ or {z}
= Sz, r)NA=2¢

= x is not an adherent point of A which contradicts the hypothesis that x € A.
Therefore, our supposition is wrong. Thus x € AU A’.

(iv) To prove that A is closed set, we shall prove that (A)° is open set.
For this, consider x € (A)°. Then x ¢ A

= x is not an adherent point of A

= there exists atleast one r > 0 such that S(x, r) N A = ¢.
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Now, we claim that S(z, 1) N A = ¢.

For this, lety € S(x, r). Then d(x, y) <r.

Consider v’ =r —d(x, y), then v’ >0 and S(y, r') C S(z, r)
=Sy, ")NACS(x,r)NA=2¢

=Sy, ") NACop= Sy, rNA=¢

= y is not an adherent point of A

=y¢A
= Sz, r)NA=¢

= S(x, r) C (A,

Hence (A) is open = A is closed.

(v) Suppose that A is closed set. Then we shall show that A = A. For this,
we have A C A (by definition).

Since A is closed set so A C Aand AC A= AUA CA

= AC A. Hence A= A.

Conversely, suppose that A= A. Then by (iv), it follows that A is closed set.
(vi) Since A C A

= A contains A. We have proved in (iv) that A is always closed. Now, let K
be any closed set containing A. Then A C K

= ACK

= ACK.

This shows that A is the smallest closed set containing A.

(vii) Let F = N{K : K is closed set and K D A}.

Then F' is closed.

Since A is closed set containing A = A is in the above collection and so F C A.
Since intersection of all closed sets is closed, so F is closed set containing A.

But A is the smallest closed set containing A= A C F. Thus F = A= A is
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the intersection of closed sets containing A.

(20.3.11) Theorem. Let (X, d) be a metric space and let A, B be any subsets
of X. Then (i) if AC B=ACB (ii) (ANB) c ANB (iii) (AUB) =
AUB.

Proof. (i) Let A C B. Since BC B

= ACBCB

= B is a closed set containing A. But A is the smallest closed set containing
A. Therefore A C B.

(13) Since ANB C A and ANB C B

therefore, by part (i), ANB C A and ANB C B

= ANBCANB.

(1ii) Since AC AUB and BC AUB

therefore, by part (i), we have AC AUB and BC AUB

e AUBCATB. (1)

Now, AC A and BC B

= AUBC AUB

= AUBC AUB

= AUBCAUB......... (2) (because AU B is a closed set )

From (1) and (2), we have AUB = AU B.

(20.4) Examples

1. Let (R, d) be the usual metric space. Find the interior, exterior, frontier
and boundary points of each of the folowing subsets of R:

(a) (0, 1) (b) {5 :neN} (iii) Q.

Proof.(a) Let A= (0, 1)

(i) Clearly (0, 1) is open set. Therefore A=A = (0, 1).

(i1) Eat(A) = (A9)° = ((—o0, 0] U [1, 00))°
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(=00, 0]7 UL, 00)°
(—o0, 0) U (1, 00).
(iti) Fr(A) =R —A°UExt(A) =R — (0, 1) U (A°)°

=R—(0,1)U(—o0, 0)U (1, c0)

—R-R=¢.
(1v) Since bd(A) C Fr(A)

= bd(A) = ¢.

(b) (i) Let A ={% :n € N}. Then A° = ¢ because there does not exist open

interval containing any point say w% € A, where m € N such that

1 1
(——e,——i—e) C A.
m m

(ii) Ext(A) = (49)° = (R-{2:neN})’
=R—-{%:neN}.
(1i1) Fr(A) =R — A°U Ext(A)
=R-¢N[R-{;:neN})]
=Rn{+:neN}tu{o}
= {1 :neN}uU{0}.
() bd(A) = A — A°U Ext(A)
={2:neN}-[R-{t:neN}uU{0}]
_{LineN)
(c) (i) Letx € Q. Then there does not exist an open sphere with centre x € Q
and contained in Q. Therefore, Q° = ¢.
(i) Ext(Q) = (R — Q) = (Ir)” = ¢.
(1ii) Fr(Q =R—-Q°UEzt(Q) =R —-—0¢U¢p =R.
(iv) bd(Q) = Q — Q°U Ext(Q) = Q— ¢ U = Q.
2. Find the closure of the following subset of R in usual metric space (i) sin-

gleton set (i1) finite subset of R (iii) N () Z (v) Q (vi) R—Q.
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Solution. (i) Let A = {x}. Then the derived set of A is given by A’ = ¢.
Therefore, A= AUA =AU ¢ = A. ie, {z} = {z}.

(ii) Let A = {x1, T, ..., T, } be a finite set. Then A’ = ¢. Now, A = AUA' =
AUg¢ = A.

(1)) N=NUN =NU¢ =N.

(iv) Z=ZUZ =7ZU ¢ =17.

(iv) Q=QUQ' =QUR=R.

() R=0=(R—-Q)U[R-Q) = (R-Q)UR=R.

(20.5) Let Us Sum Up: In a metric space (X, d), we could define the notion
of interior, exterior, frontier and boundary points of a subset. In this lesson,

we have explicitly computed these for some subsets of a usual metric space

(R, d).

(20.6) Lesson end exercise

1. Find the interior of [a, b] in usual metric space (R, d).

2. Find the derived set of the following subsets of R in usual metric space:
(1) = (0, 1) (i7) (0, 1] (z2) [0, 1) (iv) [0, 1].

3. Find the derived set of the following subsets of R in usual metric space:
(1) singleton set (ii) finite subset of R

(i) N (iv) Z (v) Q (vi) R—Q.

(20.7) University Model Questions
1. Give an example to show that
A°U B° # (AU B)°.
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Hint: Take A = Q and B = Ir, the set of irrational numbers. Then A° =
¢, B°=¢ and (AU B)° =R.

2. Show that the closure of open sphere is contained in the corresponding closed
sphere. Also give an example to show that the closure of an open shpere is not
necessarily a closed shere.

3. Give an example to show that
AUB # AUB.

Hint: Take A = Q and B = Ir, the set of irrational numbers. Then Q = R
and Ir =R. But ANB=¢ and ANB = ¢ and QN Ir = R.
4. Prove that (i) Ac = (A°)°

(ii) (A) = (A°)°

(iii) b(A) = AN Ac

(iv) b(A) = A — A°,
(20.8) Suggested Readings: Shanti Narayanan, M. D. Raisinghania; El-
ements of Real Analysis, S. Chand and Company Puvt. Ltd Ramnagar New

Delhi-110055.
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Lesson-XXI Continuous functions on metric spaces

21.0 Structure

21.1 Introduction

21.2 Objectives

21.3 Continuous function
21.3.1 Definition

21.3.2 — 21.3.6 Theorems
21.4 Examples

21.5 Let Us Sum Up
21.6 Lesson end exercise

21.8 Suggested Readings

(21.1) Introduction: As we are familiar with the concept of continuity of a
function on real numbers. Similarily we can study the concept of continuous
functions on the metric spaces. In this lesson we will explain the properties of
continuous functions on a metric space (X, d).

(21.2) Objective: The students will learn the continuity of functions on a
metric space which is the generalisation of ral valued continuous functions on
any metric space.

(21.3) Continuous functions on metric spaces

(21.3.1) Definition: Let (X, d) and (Y, p) be any two metric spaces. Then
a function f : X — Y is said to be continuous at a point a € X if for every

€ > 0, there exists 6 > 0 such that whenever

d(z, a) < d= p(f(x), €).

In other words, for each open sphere S(f(a), €) centered at f(a), there exists

an open sphere S(a, &) centered at a such that
f(5(a, 8)) € S(f(a), €).
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Note: A function f : X — Y, which is continuous at every point of X is
called continuous function.

(21.3.2) Theorem. Let (X, d) and (Y, p) be any two metric spaces. Then
a function f : X — Y is continuous if and only if for each open subset
G CY, f1QG) is open subset of X.

Proof. First, we suppose that f : X — Y is a continuous function and G is
an open subset of Y. Then we will show that f~'(G) is open subset of X. For
this, if f~1(G) = ¢, then there is nothing to prove. Now, let f~1(G) # ¢ and
r € f7YG). Then f(x) € G.

Since G is open set, so there exists € > 0 such that
S,(f(z), e) CG.

Also f 1s continuous

= there exists an open sphere Sq(x, 0) centered at x such that f(Sq(x, 0)) C
S,(f(x), €) C G = Sy(x, §) C [7HG).

Thus for each x € f~1(G), there exists an open sphere Sy(x, &) centered at
such that Sy(x, §) C f~1(G). Hence, f~1(G) is open in X.

Conversely, suppose that for each open subset G C'Y, [~ Q) is open subset
of X. Claim: f is continuous. For this, let x € X be any point. Then
f(x) € Y = there exists an open sphere S,(f(x), €) centered at f(z) inY.
Since every open sphere is an open set. Therefore, S,(f(x), €) is an open
subset of Y. Then by given condition, f~1(S,(f(x), €)) is open set in X and
1t contains x.

Therefore, there exists an open sphere Sy(z, §) centere at x in X such that

Sa(x, 8) C f7H(S,(f(2). €))

= f(Sa(z, 6)) C S,(f(x), €). This shows that f is continuous at x, but x was
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an arbitrary point of X. Thus, f is continuous at every point of X and so f
18 continuous function.

(21.3.3) Theorem. Let (X, d) and (Y, p) be any two metric spaces. Then
a function f : X — Y s continuous if and only if for each closed subset
K CY, f7YK) is closed subset of X.

Proof. First, we suppose that f : X — Y is a continuous function and K 1is
a closed subset of Y.

Then we will show that f~'(K) is closed subset of X.

For this, we have K is a closed subset of Y,

then Y — K is open subset of Y

= f"YY — K) is open in X

= 1Y) — fYK) is open in X

= f7Y(K) is closed set in X.

Conversely, suppose that f : X — Y is a function such that inverse image
of every closed subset of Y 1is closed subset of X. We shall show that f s
continuous.

For this, let G be an open set in'Y =Y — G is closed in' Y

= f7UY — Q) is closed in X by given hypothesis

= YY) — fYG) is closed in X

= X — f"4Q) is closed in X

= Q) is open in X.

Therefore, for each open set G CY, we have f~Y(G) is open in X. Thus f is
continuous.

(21.3.4) Theorem. Let (X, d) and (Y, p) be any two metric spaces. Then a

function f : X =Y s continuous if and only if

f(A) C f(A),VAC X).

223



Proof. First, we suppose that f is continuous function and let A C X. To
show that

f(A) C f(A).

Note that f(A) is a closed subset of Y. Since f is continuous, so = f~1(f(A))

1s closed set in X

= [1f(A) = U (A oo, (1)
Now, f(A) C f(A)

= AcC [7(f(4)

= A C f(f(A) = f(F(A)) (because of (1))
= f(A) C f(A).

Conversely, suppose that

To show that f is continuous.

For this, let K be a closed subset of Y = K = K

Now, f~(K) is a subset of X

therefore by given hypothesis f(f~Y(K)) C f(f"YK)) =K = K
ie.f~Y(K)C f~Y(K) but {7 (K) C f~1(K)

= f7H(K) = f(K)

= f7YK) is closed set in X

Therefore for all closed subset K of Y = f~1(K) is closed set in X. Hence f

18 continuous function.
(21.3.5) Theorem. Let (X, d) and (Y, p) be any two metric spaces. Then a
function f : X =Y s continuous if and only if

fYB)C f7Y(B),VBCY.
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Proof. First, we suppose that f is continuous function and let B C'Y. Then
B is closed set in'Y, since f is continuous,

so f~Y(B) is closed set in X

= [4B) = [ (B (1)

Now, BC B = f"Y(B) Cc f~Y(B)

= f1(B) € f~\(B) = f"1(B) (using (1))

~ 7B ¢ /(D).

Conversely, suppose that fT(B) c f7Y(B),YB C Y. To show that f is
continuous.

For this, let K be a closed subset of Y. Then by hypothesis, we have fT(K) -
(R

= FE) € f1(R) = £(K)

= FE) € F1(K)

But f{(K) € T(K)

Therefore, f~Y(K) = f~Y(K) = f~Y(K) is a closed subset of X. Thus for each
closed subset K of Y = f~1(K) is closed subset of X. Hence f is continuous.
(21.3.6) Theorem. Let (X, d) and (Y, p) be any two metric spaces. Then a

function f : X =Y s continuous if and only if

fFUB) c{f (B}, VBCY.

Proof. First, we suppose that f is continuous function and let B C'Y. Then
B° is open subset of Y, since f is continuous function. So f~Y(B°) is an open
subset of X.

= (fYB)" = fTYUB)cooioier (1)

Now B° C B

= B C £

= (f71(B%))" C (f7H(B))” use (1)
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= f71(B°) C (f71(B))’

Conversely, suppose that
(B c{fr (B}, vBCY.

To show that f is continuous, let G be an open subset of Y
= G°=G.
Therefore by the hypothesis f~1(G°) C {f~4G)}°
= f7HG) c {7 HG)Y°
But {f~H(G)}" € f7H(G)
= {f"HG)}" = (G
= f1(G) is open in X.
Therefore, for all open set G C Y = f~1G) is open in X. Hence f is
continuous.
(21.4) Examples
1. Let (X, d) be a metric space and xy be a fized point of X. Show that the
real valued function f.,(x) = d(z, xo) is continuous.
Solution. Let y be any point of X and € > 0 be any arbitrary real number.
Then | foo () = foo(W)| = ld(z, x0) — d(y, z0)| < d(z, y) (because d(z, A) —
d(y, A) < d(z, y))
Now choose 6 > 0 such that § < e.
whenever d(z, y) < § = |d(x, o) — d(y, x)| < I <e.
Thus
d(z, y) <6 = |fa(x) = foo(y)] <€

This shows that f,, is continuous at an arbitrary point y, it foolows that f,,

s continuous function.
2. Let (X, d), (Y, p) and (Z, o) be three metric spaces and f : X — Y and

g Y — Z be continuous functions. Then prove that gof : X — Z 1is also
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continuous.

Solution. Let G be an open set in Z. Then we have

(gof)"HG) = (flog )(G) = f (g7 (G))

Since g is continuous and G is open Z, so g~ (G) is open in'Y. Now, since f
is continuous and g~ (G is open in'Y, it follows that f~1 (g7 (G)) is open in
X

= (gof) ' (G) is open in X. Thus gof is continuous.

(21.5) Let Us Sum UP: In this lesson we have defined continuous function
on metric spaces and then explained the various properties of continuous func-

tions on metric spaces in the form of theorems.

(21.6) Lesson End Exercise

1. Define continuous function on metric spaces. Show that inverse image of
closed set is closed set.

2. Let (X, d) be a metric space and zq be a fived point of X. Show that the
real valued function f.,(x) = d(z, xo) is continuous.

3. Let (X, d) be a metric space and S be a non-empty subset of X, then prove
that the function f : X — R defined by f(x) = d(x, S)Vx € X is continuous
function.

(21.7) Suggested Readings: Shanti Narayanan, M. D. Raisinghania; El-
ements of Real Analysis, S. Chand and Company Puvt. Ltd Ramnagar New
Delhi-110055.
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Lesson-XXII Convergent sequences in metric space

22.0 Structure

22.1 Introduction

22.2 Objectives

22.3 Sequences in a metric space
22.3.1 — 22.3.3 Definitions
22.3.4 — 22.3.9 Theorems
22.4 Cauchy Sequence
22.4.1 Definition

22.4.2 Theorem

22.5 FExamples

22.5 Let Us Sum Up

22.6 Lesson end exercise

22.8 Suggested Readings

(22.1) Introduction: Analogous to the notion of sequences of real numbers
and their convergence, we shall study the sequences and their convergence in
metric spaces. Further, we can investigate the properties of convergent se-
quences in metric spaces.

(22.2) Objectives: The students will learn the generalisation of convergence
of sequences from set of real numbers to any metric space.

(22.3) Sequences in a metric space

(22.3.1) Definition (Sequence): Let (X, d) be a metric space. A function
s: N — X is called a sequence in a metric space. It is denoted by {s,}, where
Sn, s called nth term of the sequence.

For example {(—1)"} is sequence whose image has only two elements 1 and

—1 whereas the sequence {%} has infinite number of elements in its image.
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(22.3.2) Definition (Subsequence): A sequence {t,} is called a subse-
quence of the sequence {s,} if there exists a sequence of natural numbers {n;}
such that ny <ng <mnz <...andt, = s,,.

For example (i) {s2, S4, S¢, - .-} is a subsequence of {s,|n € N}. Here nj, = 2k.
(i1) {s1, S4, So, ...} is a subsequence of {s,|n € N}. Here ny = k.

(22.3.3) Definition (Convergent sequence): A sequence {s,} is said to
converge to a point s € X if for given € > 0, there exists m € N such that
d(sp, s) <e€,Vn>m.

In other words, the sequence {s,} is said to converge to a point s € X if for
given € > 0, there exists m € N such that s, € S(s, €),¥Yn > m.

Note: If {s,} converges to s, we say that s is a limit of the sequence and we
write

lim s, = s or s, — s as n — o0o.
n—oo

(22.3.4) Theorem. Limit of the sequence {s,}, if exists is unique.
Proof. Suppose that the sequence {s,} converges to two distinct points say s

andt. Letr = d(s, t). Then the open spheres S(s, §) and S(t, §) are disjoint.

1

Since

lim s, = s

n—yo0
so there exists my € N such that s, € S(s, §),YVn > my......... (1)
Similarily,

lim s, =t

n—yo0
so there exists my € N such that s, € S(t, ) ,¥Yn > mg.......... (2)
Choose m = max{my, ma}. Then from (1) and (2) we have s, €
S(s, 7),¥Yn>m and s, € S(s, §),Vn>m

= S(s, §) N S(t, §) # ¢ which is a contradiction. Hence the limit {s,} is

unique.
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(22.3.5) Theorem. Let (X, d) and (Y, p) be two metric spaces. Then a func-
tion f: X — Y is continuous at a € X if and only if for each sequence {a,}
in X converging to a, the sequence {f(a,)} converges to f(a).

Proof. First, we suppose that f : X — Y 1is continuous at a and the sequence
{an} converges to a. Let ¢ > 0. Since f is continuous al a, so there exists

0 > 0 such that

when d(x, a) < § = p(f(z), f(a)) < €eeeeene (1)
Also
Jim o =

so there exists m € N such that
d(an, a) <6, Yn > m........ (2)
Put x = a, in (1), we get

d(zn, a) <= p(f(x,), fla)) <€ (3)

From (2) and (3) we get p(f(x,), f(a)) < e, ¥Yn>m

= {f(an)} — f(a) as n — oc.

Conversely, if possible, suppose that f is not continuous. Then we shall show
that there ezists a sequence {a,} converging to a but the sequence { f(a,)} does
not converge to f(a).

For this, since f is not continuous, so there must exist atleast one € > 0 such

that for each 6 > 0 and for some x € X,

d(z, a) <6 and p(f(z), f(a) >€)....... (4)

Take 6 = % in (4), we get, for each n € N, there exists a,, € X such that

A, a) < - but plf(an), fla)) > e
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= {f(an)} cannot converge to f(a).

(22.3.6) Theorem. Let x and y be any two points in a metric space (X, d)
and {yn} be a sequence converging toy. Then {d(x, y,)} converges to d(z, y).
Proof. Since {y,} converges to y

therefore, for given € > 0, there exists m € N such that

Now |d(z, y,) — d(z, y)| < d(yn, y) (because of Example (21.4)(1))

Using (1), we get |d(z, yn) — d(x, y)| < d(yn, y) <€, Vn >m

= d(x, y,) — d(z, y).

(22.3.7) Theorem. Let (X, d) be a metric space and {x,} and {y,} be

sequences in X such that x, — x and y, — y. Then

d(zp, yn) — d(z, y).

Proof. Since x, — x and y, — vy, so by definition there exist my, my € N
such that

d(zp, x) < €/2,¥Vn>my

and

Ad(Yn, y) < €/2,Vn > my

Choose m = max{my, ma}. Then d(z,, ) < €/2,Vn > m and d(y,, y) <
€/2,¥n >m. Now
A, o) — (2, 9)| = |0, ) — A, 9) + dlzn, v) — dz, )]
< d(@n, yn) = d(@n, y)| +[d(2zn, y) — d(z, y)|
< d(yn, y)| + |d(zn, y)| <€/2+€/2 =€
= |d(zn, yo) —d(z, y)| <€, VR >m

= d(xp, yn) — d(z, y).
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(22.3.8) Theorem. Let (X, d) be a metric space and let A C X. Ifx € A,
then there exists a sequence {z,} of points of A such that x,, — x.
Proof. Let x € A. Then x is an adherent point of A
= for each r >0, S(z, r) N A # ¢.
Therefore, for each positive integer n, the open sphere S(x, %) must contain a
point x,, of A i.e.x, € S(x, %)
Now, we claim that x, — x as n — oo. For this, by Archimediean Property,
for given € > 0, there exists ng € N such that nge > 1
= i < €, therefore, for each n > ny we have % < nio < €
( 1) C S(x, ni)CS(m €)
) C S(z, n—)CS(x €),Vn>ng
) C S(z, €), Vn>nyg

)
=z, € S(z, 1
=z, € S(z, L
=z, € S(z, €), Vn > ng

= d(z,, x) <€, Vn>ny.

Hence x,, > x as n — oo.

(22.3.9) Theorem. Let (X, d) be a metric space and A C X. Ifx € A’, then
there exists a sequence {x,} of points of A distinct from x which converges to
x.

Proof. Let x € A'. Then x is a limit point of A

= each open sphere S(x, 1) centered at x contains atleast one point of A other
than x i.e S(z, r)NA—{x} # ¢.

Let x1 # x such that x1 € A and d(x, x1) <r

Let ri = min{1, d(x, x1)}

therefore, the open sphere S(x, r1) contains atleast one point of A other than
xzi.e S(x,r)NA—-{x}#o.

Let x5 # x such that xo € A and d(z, x3) < rq
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Let ry = min{3, d(z, z5)}

Again, the open sphere S(x, ry) contains atleast one point of A other than
xi.e S(x, r)NA—{x} #¢.

Let x3 # x such that x3 € A and d(z, x3) < 19

Let ry3 = min{3, d(z, 3)} and continuing as above, we get a sequence {x,} of

distinct points different from x such that

1
n = mi _7d y n
r mln{n (x a:)}

and open sphere S(x,T,) contains a point x,y3 of A other than
xie Sz, 1) NA—{x} # .

Thus d(x, x,) < rp_1 < ﬁ

Taking limit as n — oo, we get d(x, x,) — 0 and so x,, — x.

(22.4) Definition: A sequence {z,} in a metric space (X, d) is said to

be a Cauchy sequence if for each € > 0 there exists a positive integer

no(depending upon €) such that
d(xp, Tm) < €, YN, m > ng.

(22.4.1) Theorem. Every convergent sequence in a metric space is a Cauchy
sequence.
Proof. Let {x,} be a convergent sequence such that x, — = in a metric space

(X, d). Then for given € > 0, there exists ng € N such that
d(zn, x) < €/2, ¥Yn > ny.

Let m > ng, then d(x,,, x) < €/2, Vm > ny.
Now d(zp, Tp) < d(x,, )+ d(x, x,), Y0, m > ng
<€/2+¢€/2=c¢

= d(Tn, Tm) < €, Yn, m >ng. Hence {z,} is a Cauchy sequence.
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Note: The converse of this theorem is not necessarily true. i.e a Cauchy
sequence need not be convergent sequence in a metric space.

For exzample, let X = (0, 1] be a usual metric space with metric d. Let {x,}
be a sequence in X such that x, = %, Vn € N. We shall show that {z,} is a
Cauchy sequence. For this, since for given € > 0, there exists ng € N such that
ng > % (by Archimedean Property), then

forn,m2n0:>%§n—10<§ and%ﬁnio<§

Now d(xy,, Tp) = [Ty — Tp| < |20 + |Tm]

==+
<z+:=¢€

Nl 3=
S

Thus, d(x,, T,) <€, ¥Yn, m > ng
Therefore {x,} is a Cauchy sequence.
But
lim z, = lim l:0§éX.

n—00 n—oo M,

Hence a Cauchy sequence need not converge to any point of the metric space.
(22.4.2) Theorem. A Cauchy sequence {x,} is convergent in a metric space
of and only if it has a convergent subsequence.

Proof. Firstly, let us suppose that {x,} is Cauchy sequence and {x,, } be a
subsequence of {x,} converging to x € X. Then we shall show that {x,} is
convergent sequence. For this, since every convergent sequence is Cauchy

so {x,, } is also Cauchy sequence.

Therefore, for given € > 0, there exists a positive integer m such that
d(zp,, xn) < €/2,VEk, n>m...(1)

Also {xp, } = x
= d(zy,,, ¥) < €/2,Vk >p for somep e N......... (2).

Let k =m+p=r, say. Then (2) becomes
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d(zp,, ©) < €/2..... (3).

Also note that n. > r > q and hence (1) becomes
d(xp,, ,) <€/2,¥r,n>m...(4)

Now by tiangle inequality d(x, x,) < d(z, ©,,) + d(xp,, )

<€/2+€/2=¢
= d(z, x,) <€, Yn>m.
Hence {x,} is convergent.
Conversely, suppose that {z,} is a Cauchy sequence which is also convergent
in a metric space (X, d). To show that {x,} has a convergent subsequence.
For this, since {x,} is convergent, suppose it converges to x € X. Then the
constant sequence {x, x, ...} is a subsequence which is also convergent.
(22.5) Examples
1. Let {s,} be a Cauchy sequence in a metric space (X, d) and {s,,} be a

subsequence of {s,}, then show that

lim d(sp,, s,) =0.

n—oo

Solution. Since {s,} is a Cauchy sequence, so for given € > 0 there erists
ng € N such that

d(Sm, sp) < €, ¥Ym, n >ng

Consider {n;} such that ng <n <n; <mns <.... Then
d(Sn;, Sn) < €,V n, n; > nyg.

Hence we have

lim d(sp,, s,) =0.

n—oo

2. Let {b,} be a Cauchy sequence in a metric space (X, d) and let {a,} be a
sequence in X such that d(a,, b,) < 1/n for every n € N then show that {a,}
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1s a Cauchy sequence in X.
Solution. Since {b,} is a Cauchy sequence, so for given € > 0 there exist

my € N such that
d(by, bn) < €/3,Ym, n > my......... (1).

Now, by Archimedian property, for e, we can find positive integer mo such that
L <e/3and X <e€/3, Vim, n > my.
Choose mg = max{my, ma},
then m, n > mg = d(by, b,) < €/3, + <¢/3, £ <¢e/3........ (%)
Now, by triangle inequality, for m, n > mqy we have
Ay an) < d(am, b)) + d(bi, by) + d(bn, an)
<Lte/3+1
<€/3+€/3+¢€/3=c¢
= d(am, an) < €, Vm, n > ng. Hence {a,} is a Cauchy sequence.
(22.6) Let Us Sum Up: In this lesson, we have defined the notion of se-
quence, subsequence and the convergence of a sequence in a metric space. Then
we have explained the properties of convergent sequences in a metric space via

theorems and examples.

(22.7) Lesson End Exercise

1. If {z,} is a Cauchy sequence in some metric space (X, d), and a subse-
quence {x,, } converges to a limit v € X, show that {x,} converges to x.

2. Show that a subsequence of a Cauchy sequence must be a Cauchy sequence.
3. If {z,} and {y,} are sequences in a space with metric d such that {x,}
is a Cauchy sequence and d(x,, y,) — 0, show that {y,} is also a Cauchy

Sequence.
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(21.7) Suggested Readings:(20.8) Suggested Readings: Shanti
Narayanan, M. D. Raisinghania; FElements of Real Analysis, S. Chand and
Company Put. Ltd Ramnagar New Delhi-110055.
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