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Unit-I

Lesson-I Vector Spaces

1.0 Structure

1.1 Introduction

1.2 Objectives

1.3 Vector spaces

1.3.1 Definition of vector space

1.3.2 Theorem

1.4 Examples

1.5 Let Us Sum Up

1.6 Lesson End Exercise

1.7 University Model Questions

1.8 Suggested Readings

(1.1) Introduction: As we are familiar with the notion of Rings and fields

where a non empty set carries two binary operations namely addition (+) and

multiplication (.). Similarly here in this lesson we are going to introduce a no-

tion of vector space. A vector space is a non empty set of vectors with two

operations (one is internal binary operation among the vectors and another is

external operation on elements of set of vectors and elements of field known

as scalar multiplication).

(1.2) Objectives: (i) students will get understanding of a set of vectors.

(ii) through this lesson students will understand the relation between algebra

and geometry.

(1.3) Vector Spaces

(1.3.1) Definition: A non empty set V is said to be a vector space over a

field F under a binary operation + and scalar multiplication λ : F × V → V
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defined by λ(α, v) = αv if the following properties are satisfied:

I) (V,+) is an abelian group.

II) properties under scalar multiplication

(1) (α + β)v = αv + βv, ∀ α, β ∈ F and ∀ v ∈ V

(2) α(u+ v) = αu+ αv, ∀ u , v ∈ V and ∀ α ∈ F

(3) α(βv) = (αβ)v, ∀ α, β ∈ F and ∀v ∈ V

(4) 1v = v, ∀v ∈ V .

It is generally denoted as V (F ).

(1.3.2) Theorem: Let V (F ) be a vector space over F . Then

(i) 0v = 0, ∀ v ∈ V (ii) α0 = 0, ∀ α ∈ F .

(iii) α(−v) = −αv = (−α)v (iv) α(u − v) = αu − αv, ∀ α ∈ F and

∀ u, v ∈ V .

(v) αv = 0 if and only if either α = 0 or v = 0.

Proof:(i) Since 0 + 0 = 0 in F .

Therefore, (0 + 0)v = 0v + 0v, ∀ v ∈ V ⇒ 0v = 0v + 0v

⇒ 0 + 0v = 0v + 0v ⇒ 0 = 0v.

(ii) Since 0 + 0 = 0 in V .

Therefore, α(0 + 0) = α0 + α0, ∀ α ∈ F ⇒ α0 = α0 + α0

⇒ α0 + 0 = α0 + α0⇒ 0 = α0.

(iii) Since α + (−α) = 0⇒ (α + (−α))v = 0v = 0

⇒ αv + (−α)v = 0⇒ (−α)v = −(αv).

Similarly, α(−v) = −αv.

(iv) By the property of vector space, we have α[u + (−v)] = αu + α(−v) =

αu− αv (by (iii)).

(v) Suppose that αv = 0 and α 6= 0. Then there exists α−1 ∈ F . This implies

that α−1(αv) = α−10 = 0 (using property (i))
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⇒ (α−1α)v = 0⇒ 1v = 0⇒ v = 0.

Conversely if either α = 0 or v = 0. Then in any of cases αv = 0.

(1.4) Examples

1. Let V = Rn. Define operation + and scalar multiplication on V as

(x1, x2, . . . , xn)+(y1, y2, . . . , yn) = (x1+y1, . . . , xn+yn) and α(x1, . . . , xn) =

(αx1, . . . , αxn),∀ α ∈ F and for all (x1, . . . , xn), (y1, . . . , yn) ∈ Rn respec-

tively. Then V is a vector space over R.

For n = 1, V = R, is a vector space over itself. For n = 2, V = R2 =

{(x, y)|x, y ∈ R} is a vector space over R under the usual addition and scalar

multiplication.

Properties under +

(A1) Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be any two elements of Rn.

Then x+y = (x1 +y1, . . . , xn+yn) ∈ Rn because xi+yi ∈ R, ∀ i. This implies

that V is closed under +.

(A2) Let x, y and z be any elements of V . Then x+ (y + z) = (x1, . . . , xn) +

(y1 + z1, . . . , yn + zn)

= (x1 + (y1 + z1), . . . , xn + (yn + zn))

= ((x1 + y1) + z1, . . . , (xn + yn) + zn)

= (x1 + y1, . . . , xn + yn) + (z1, z2, . . . , zn)

= (x+ y) + z

(A3) There exists 0 = (0, . . . , 0) ∈ V such that x + 0 = (x1, . . . , xn) +

(0, . . . , 0)

= (x1 + 0, . . . , xn + 0)

= (x1, . . . , xn) = x, ∀ x ∈ V

(A4) For each

x = (x1, . . . , xn) ∈ V
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there exists −x = (−x1, . . . , −xn) ∈ V

such that x+ (−x) = (x1 − x1, . . . , xn − xn) = (0, . . . , 0) = 0

(A5) x + y = (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn) =

(y1 + x1, . . . , yn + xn) = y + x.

Properties under scalar multiplication: Let α, β be scalars and x =

(x1, . . . , xn) and y = (y1, . . . , yn) be any two elements of Rn. Then

(S1) α(x+ y) = α(x1 + y1, . . . , xn + yn)

= (α(x1 + y1), . . . , α(xn + yn))

= (αx1 + αy1, . . . , αxn + αyn)

= (αx1+, . . . , αxn) + (αy1, . . . , αyn)

= αx+ αy

⇒ α(x+ y) = αx+ αy.

(S2) (α + β)x = (α + β)(x1, . . . , xn)

= ((α + β)x1, . . . , (α + β)xn)

= (αx1 + βx1, . . . , αxn + βxn)

= (αx1, . . . , αxn) + (βx1, . . . , βxn)

= αx+ βx

⇒ (α + β)x = αx+ βx.

(S3) (αβ)x = (αβ)(x1, . . . , xn)

= ((αβ)x1, . . . , (αβ)xn)

= (α(βx1), . . . , α(βxn))

= α(βx1, . . . , βxn)

= α(βx)

⇒ (αβ)x = α(βx)

(S4) 1x = 1(x1, . . . , xn)

= (x1, . . . , xn) = x.
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2. Let V = R2 = {(x, y)|x, y ∈ R}. Define addition and scalar multiplication

on V as (x1, y1) + (x2, y2) = (x1 + y1, x2 + y2) for all x1, x2, y1, y2 ∈ R and

α(x1, x2) = (αx1, 0) ∀α ∈ R and ∀(x1, x2) ∈ V is not a vector space.

It is easy to see that (V,+) is an abelian group. The property 1(x1, x2) =

(x1, 0) 6= (x1, x2) which shows that V is not a vector space.

3. Let V = {a0 + a2x + . . . anx
n|a0, a1, . . . an ∈ F} be a set of polynomials

over a field F . Then V is a vector space over F under the operation addi-

tion + and scalar multiplication defined as (a0 + a1x+ . . . anx
n) + (b0 + b1x+

. . . bmx
m) = (a0 + b0) + (a1 + b1)x+ . . . (am + bm)xm + . . . anx

n, if m < n and

α(a0 + a1x+ . . .+ anx
n) = αa0 + αa1x+ . . .+ αanx

n respectively.

4. Let Vn = {a0 +a2x+ . . . anx
n|a0, a1, . . . an ∈ F} be a set of polynomials over

a field F with deg f(x) ≤ n, for all f(x) ∈ Vn. Then Vn is a vector space.

Properties under +: (A1). Let f(x), g(x) be any elements of Vn. Then

deg(f(x)) ≤ n and deg(g(x)) ≤ n. Now, We know that deg(f(x) + g(x)) ≤

max{deg(f(x)), deg(g(x))} ≤ n. This implies that f(x) + g(x ∈ Vn.

A2. Since deg 0 = −∞, so 0 ∈ V such that f(x)+0 = 0+f(x) = f(x), ∀f(x) ∈

Vn.

A3. Let f(x) = a0 + a1x + a2x
2 + . . . , g(x) = b0 + b1x + b2x

2 + . . . and

h(x) = c0 + c1x+ c2x
2 + . . . be any elements of Vn. Then it is easy to see that

(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)) and f(x) + g(x) = g(x) + f(x).

Therefore, Vn is an abelian group.

Properties under scalar multiplication:

(S1) Let α ∈ F and f(x) = a0 +a1x+a2x
2 + . . .,g(x) = b0 + b1x+ b2x

2 + . . . in

Vn. Then α(f(x) + g(x)) = α((a0 + a1x+ a2x
2 + . . .) + (b0 + b1x+ b2x

2 + . . .))

= α(a0 + b0) + α(a1 + b1)x+ . . .

= (αa0 + αa1x+ . . .) + (αb0 + αb1x+ . . .)
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= αf(x) + αg(x)

(S2) Let α, β ∈ F and f(x) = a0 + a1x+ a2x
2 + . . . ∈ Vn.

Then (α + β)f(x) = (α + β)a0 + (α + β)a1x+ . . .

= (αa0 + βa0) + (αa1x+ βa1x) + . . .

= (αa0 + αa1x+ . . .+ βa0 + βa1x+ . . .))

= αf(x) + βf(x)

(S3) Let α, β ∈ F and f(x) = a0 + a1x+ a2x
2 + . . . ∈ Vn.

Then (αβ)f(x) = (αβ)a0 + (αβ)a1x+ . . .

= α(βa0) + α(βa1)x+ . . .

= α(βf(x))

(S4) 1f(x) = f(x), ∀f(x) ∈ Vn.

Therefore, Vn is a vector space over F .

5. Let V be the abelian group of positive real numbers for multiplication. De-

fine scalar multiplication in V by ax = xa, a ∈ R and x ∈ V . Then V is a

vector space over R.

Solution It is enough to verify the properties under scalar multiplication:

(1) Let a, b ∈ R and x ∈ V ,

then (a+ b)x = xa+b

= xaxb

= (ax)(bx) = ax+ bx (because here + in V means multiplication).

(2) Let a ∈ R and x, y ∈ V .

Then a(xy) = (xy)a

= xaya

= (ax)(ay)

(3) Let a, b ∈ R and x ∈ V .

Then (ab)x = xab
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= (xb)a

= (bx)a

= a(bx)

(4) Let 1 ∈ R and x ∈ V . Then 1x = x1 = x.

6. Let F be a field and Mm×n(F ) be the set of all m×n matrices over F . Then

Mm×n(F ) is a vector space over F under the addition of matrices and multi-

plication of matrix by a scalar as internal and external operations on Mm×n(F )

respectively.

Solution:Let V = Mm×n(F ).

Properties under +:

(A1) Let A = [aij] and B = [bij] be two matrices of order m × n over a field

F . Then A+B = [aij] + [bij] = [aij + bij].

This implies that A+B ∈ V .

(A2) Let A = [aij], B = [bij] and C = [cij] be any elements of V .

Then (A+B) + C = [aij + bij] + [cij]

= [(aij + bij) + cij]

= [aij + (bij + cij)]

= [aij] + [bij + cij]

= A+ (B + C).

(A3) There exists O = [0]m×n ∈ V , where 0 is an identity element of F such

that A+O = [aij + 0] = [aij] = A.

(A4) For each A ∈ V there exists −A ∈ V such that A+(−A) = [aij−aij] =

[0]m×n.

(A5) Let A = [aij] and B = [bij] be any two elements of V . Then A + B =

[aij] + [bij] = [aij + bij] = [bij + aij] = [bij] + [aij] = B + A.

Properties under scalar multiplication:
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(S1) Let α ∈ F, β ∈ F and A ∈ V . Then (α + β)A = [(α + β)aij] =

[αaij + βaij] = [αaij] + [βaij] = α[aij] + β[aij] = αA+ βA.

(S2) Let α ∈ F and A, B ∈ V . Then α(A+B) = α([aij] + [bij]) = α [aij +

bij] = [α(aij + bij)] = [αaij + αbij] = [αaij] + [αbij] = αA+ αB.

(S3) (αβ)A = (αβ)[aij] = [(αβ)aij] = [α(βaij)] = α[βaij] = α(β[aij] = αβA).

(S4) 1A = 1[aij] = [1aij] = [aij] = A.

7. Let V = F S be the set of all functions from a non-empty set S to field

F . Then V is a vector space over F under operations + (sum of functions)

and scalar multiplication defined by (f + g)(s) = f(s) + g(s), ∀ s ∈ S and

(cf)(s) = cf(s), ∀ c ∈ F and ∀ s ∈ S respectively.

Solution:

Properties under +:

(A1) Let f ∈ V and g ∈ V . Since f(s) + g(s) ∈ F ,

so (f + g)(s) = f(s) + g(s) ∈ F which implies that f + g ∈ V .

(A2) Let f, g, h be any elements of V .

Then [(f + g) + h](s) = (f + g)(s) + h(s) = [f(s) + g(s)] + h(s)

= f(s) + [g(s) + h(s)]

= f(s) + (g + h)(s)

= [f + (g + h)](s)

⇒ (f + g) + h = f + (g + h).

(A3) Define a function O : S → F by O(s) = 0, ∀ s ∈ S.

Then O ∈ V and (f + O)(s) = f(s) + O(s) = f(s) + 0 = f(s) which implies

that f +O = f, ∀ f ∈ V .

(A4) For each f ∈ V , define a function −f : S → F define by (−f)(s) =

−f(s), ∀ s ∈ V .

Then (−f + f)(s) = −f(s) + f(s) = 0 = O(s)
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⇒ −f + f = O.

(A5) (f + g)(s) = f(s) + g(s) = g(s) + f(s) = (g + f)(s)

⇒ f + g = g + f .

Properties under scalar multiplication:

(S1) Since cf(s) ∈ F, ∀ c ∈ F and ∀ f ∈ V .

Therefore cf ∈ V ∀ c ∈ F and ∀ f ∈ V .

(S2) Let c1, c2 ∈ F and f ∈ V . Then [(c1 + c2)f ](s) = (c1 + c2)f(s)

= c1f(s) + c2f(s)

= (c1f + c2f)(s)

⇒ (c1 + c2)f = (c1f + c2f).

(S3) Let c ∈ F and f1, f2 ∈ V .

Then c(f1 + f2)(s) = c[f1(s) + f2(s)]

= cf1(s) + cf2(s)

= (cf1)(s) + (cf2)(s)

= [cf1 + cf2](s)

⇒ c(f1 + f2) = cf1 + cf2.

(S4) [(c1c2)f ](s) = (c1c2)f(s)

= c1(c2f(s))

= c1[(c2f)(s)]

= [c1(c2f)](s)

⇒ (c1c2)f = c1(c2f).

(S5) (1f)(s) = 1f(s) = f(s)⇒ 1f = f .

(1.6) Lesson End Excercise

1. If F is a field, verify that F n is a vector space over the field F under the

operations addition (+) and scalar multiplication defined as (x1, . . . , xn) +
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(y1, . . . , yn) = (x1 + y1, . . . , xn + yn) and α(x1, . . . , xn) = (αx1, . . . , αxn)

respectively.

2. Let V be set of all real valued continuous functions defined in closed in-

terval [a, b]. Then show that V is a vector space over R with addition and

scalar multiplication defined by (f + g)(x) = f(x) + g(x), ∀ f, g ∈ V and

(αf)(x) = αf(x), ∀ α ∈ R, f ∈ V .

3. Let V set of all real valued continuous functions defined on [0, 1] such

that f(2
3
) = 2. Show that V is not a vector space over R under addition and

scalar multiplication defined as (f + g)(x) = f(x) + g(x), ∀ f, g ∈ V and

(αf)(x) = αf(x), ∀ α ∈ R, f ∈ V .

Hint: let f ∈ V and g ∈ V . Then f(2
3
) = 2 and g(2

3
) = 2. But

(f + g)(2
3
) = f(2

3
) + g(2

3
) = 2 + 2 = 4 6= 2. So V is not closed under ad-

dition (+).

4. Show that the set V = {f : R→ R | d2f
dx2

+ 3 df
dx

= 0 } is a vector space over

R under the operations as defined in exercise 3.

5. Let V be a vector space over the field of numbers R and W =

{(u, v) : u, v ∈ V }. Define addition in W co-ordinate wise and scalar mul-

tiplication in W by (a + ιb)(u, v) = (au− bv, av + bu), a, b ∈ R , ι =
√
−1.

Show that W is a vector space over C.

Solution: Properties under addition

(A1) Let (v1, v2) ∈ V and (u1, u2) ∈ V . Then (v1, v2) + (u1, u2) =

(v1 + u1, v2 + u2) ∈ V . Therefore V is closed under addition.

(A2) Let v = (v1, v2) ∈ V, w = (w1, w2) ∈ V and u = (u1, u2) ∈ V .

Then (v + w) + u = (v1 + w1, v2 + w2) + (u1, u2)

= ((v1 + w1) + u1, (v2 + w2) + u2)

= (v1 + (w1 + u1), v2 + (w2 + u2))
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= (v1, v2) + ((w1 + u1), (w2 + u2))

= v + (w + u)

⇒ (v + w) + u = v + (w + u).

(A3) There exists (0, 0) ∈ V such that (v1, v2) + (0, 0) = (v1 + 0, v2 + 0) =

(v1, v2), ∀ (v1, v2) ∈ V .

(A4) For each v = (v1, v2), there exists −v = (−v1, −v2) such that v+ (−v) =

(v1 − v1, v2 − v2) = (0, 0).

(A5) Let (v1, v2) ∈ V and (u1, u2) ∈ V . Then (v1, v2) + (u1, u2) =

(v1 + u1, v2 + u2) = (u1 + v1, u2 + v2) = (u1, u2) + (v1, v2).

This shows that (W,+) is an abelian group under addition.

Properties under Scalar multiplication: Let z1, z2 be any two elements

of C and v, u ∈ V . Then

(S1) (z1 + z2)v = (a1 + ιb1 + a2 + ιb2)(v1, v2)

= ((a1 + a2) + ι(b1 + b2))(v1, v2)

= ((a1 + a2)v1 − (b1 + b2)v2, (a1 + a2)v2 + (b1 + b2)v1)

= (a1v1 − b1v2, a1v2 + b1v1) + (a2v1 − b2v2, a2v2 + b2v1)

= (a1 + ιb1)(v1, v2) + (a2 + ιb2)(v1, v2)

= z1(v1, v2) + z2(v1, v2)

= z1v + z2v

⇒ (z1 + z2)v = z1v + z2v.

(S2) (a+ ιb)(v + u) = (a+ ιb)((v1, v2) + (u1, u2))

= (a+ ιb)(v1 + u1, v2 + u2)

= (a(v1 + u1)− b(v2 + u2), a(v2 + u2) + b(v1 + u1))

= (av1 − bv2, av2 + bv1) + (au1 − bu2, au2 + bu1)

= (a+ ιb)(v1, v2) + (a+ ιb)(u1, u2)

= (a+ ιb)v + (a+ ιb)u
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(S3) (z1z2)u = ((a1 + ιb1)(a2 + ιb2))(u1, u2)

= ((a1a2 − b1b2) + ι(b1a2 + b2a1))(u1, u2)

= ((a1a2 − b1b2)u1 − (b1a2 + b2a1)u2, (a1a2 − b1b2)u2 + (b1a2 + b2a1)u1)

= (a1(a2u1 − b2u2)− b1(b2u1 + a2u2), a1(a2u2 + b2u1) + b1(a2u1 − b2u2))

= (a1 + ιb1)(a2u1 − b2u2, b2u1 + a2u2)

= z1(z2(u1, u2))

= z1(z2u).

(S4) 1u = (1 + ι0)(u1, u2) = (u1, u2) = u.

6. Show that the set of all matrices of the form

 a b

−b a

 where a, b ∈ C is a

vector space over C under matrix addition and scalar multiplication.

7. Show that C is a vector space over field C.

8. Show that every field F is a vector space over itself.

Hint: Since every field F is an abelian group under addition and scalar mul-

tiplication is the multiplication of elements of F . Therefore all properties of

vector space are satisfied in F .

9. Show that R is not a vector space over C.

Hint: Since R is not closed under scalar multiplication because ι3 = 3ι does

not belong to R.

(1.7 University Model Questions)

1. If (R, +, .) be the field of real numbers, then show that R is a vector space

over R.

2. Define a vector space over a field. Let V = {x ∈ R|x > 0}. For x, y ∈ V ,

let x ⊕ y = xy and for α ∈ R and x ∈ V , let α � x = xα. Prove that V is a

vector space over R under the above operations.
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3. Define vector space over a field F . For (x1, x2) and (y1, y2) ∈ R2, let

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) and α(x1, y1) = (αx1, 0) for α ∈ R. Is

R2 is a vector space over R under the above operation?

(1.8) Suggested Readings:(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-II Subspaces of vector space and quotient space

2.0 Structure

2.1 Introduction

2.2 Objectives

2.3 Subspace of vector space

2.3.1 Definition of subspace

2.3.2− 2.3.8 Theorems

2.4 Examples

2.5 Let Us Sum Up

2.6 Lesson End Exercise

2.7 Quotient Space

2.7.1 Definition of Quotient Space

2.8 University Model Questions

2.9 Suggested Readings

(2.1) Introduction: Given any algebraic structure such as group, ring or a

field, we have studied sub-algebraic and quotient structures such a subgroup, a

subring or a subfield and quotient group, qoutient ring. Similarly we shall now

define subspace of a vector space and quotient vector space.

(2.2) Objective: The aim of this lesson is to find new vector spaces, knowing

the given vector space.

(2.3) Subspace of vector space:

(2.3.1) Definition: A non-empty subset W of a vector space V (F ) is said to

be a subspace of V if W is itself a vector space under the operations of addition

and scalar multiplication defined for V .

Note For any vector space V over a field F , the set {0} and the set V , both

are subsets of V . Also, both of these are vector spaces under the operations of
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addition and scalar multiplication of V . Hence, both {0} and V are subspaces

of V , known as trivial subspaces and the subspaces other than {0} and V

are called proper subspaces of V .

(2.3.2) Theorem: A non-empty subset W of a vector space V is a sub-

space of V if and only if (i) x + y ∈ W, ∀ x, y ∈ V and (ii) αx ∈

W,∀ α ∈ F and ∀ x ∈ W .

proof: Firstly, we suppose that W is a subspace of V . Then W is itself a vector

space under the operations of V . This implies that (i) x+ y ∈ W, ∀ x, y ∈ V

and (ii) αx ∈ W,∀ α ∈ F and ∀ x ∈ W .

Conversely, suppose that (i) x + y ∈ W, ∀ x, y ∈ V and (ii) αx ∈

W,∀ α ∈ F and ∀ x ∈ W . We shall prove that W is a subspace of

V .

For this, −1 ∈ F and x ∈ W ⇒ (−1)x ∈ W (by (ii)) ⇒ −x ∈ W . This

implies that every element of W has additive inverse.

Now by (i) we have ∀ x ∈ W, −x ∈ W ⇒ x+ (−x) ∈ W ⇒ 0 ∈ W , so that

additive identity exist in W .

Since W ⊂ V , therefore, x+ y = y + x, ∀ x, y ∈ W

x+ (y + z) = (x+ y) + z, ∀ x, y, z ∈ W

α(x+ y) = αx+ αy, ∀ α ∈ F, x, y ∈ W

(α + β)x = αx+ βx, ∀ α, β ∈ F, x ∈ W

α(βx) = (αβ)x, ∀ α, β ∈ F, x ∈ W

1x = x, ∀ x ∈ W, 1 ∈ F

⇒ W is a subspace of V .

(2.3.3) Theorem: A non-empty subset W of a vector space V is a subspace

of V if and only if (i) x − y ∈ W, ∀ x, y ∈ V i.e, W is a subgroup of (V,+)

and (ii) αx ∈ W,∀ α ∈ F and ∀ x ∈ W .
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proof: Firstly, we suppose that W is a subspace of V . Then W is itself a vector

space under the operations of V . This implies that (i) x− y ∈ W, ∀ x, y ∈ V

and (ii) αx ∈ W,∀ α ∈ F and ∀ x ∈ W .

Conversely, suppose that (i) x − y ∈ W, ∀ x, y ∈ V and (ii) αx ∈

W,∀ α ∈ F and ∀ x ∈ W . We shall prove that W is a subspace of

V .

For this, −1 ∈ F and x ∈ W ⇒ (−1)x ∈ W (by (ii)) ⇒ −x ∈ W . This

implies that every element of W has additive inverse.

For, x ∈ W and y ∈ W ⇒ x ∈ W and −y ∈ W ⇒ x − (−y) = x + y ∈ W .

So, W is closed under +.

Now by (i) we have ∀ x ∈ W,⇒ x−x ∈ W ⇒ 0 ∈ W , so that additive identity

exist in W .

Since W ⊂ V , therefore, x+ y = y + x, ∀ x, y ∈ W

x+ (y + z) = (x+ y) + z, ∀ x, y, z ∈ W

α(x+ y) = αx+ αy, ∀ α ∈ F, x, y ∈ W

(α + β)x = αx+ βx, ∀ α, β ∈ F, x ∈ W

α(βx) = (αβ)x, ∀ α, β ∈ F, x ∈ W

1x = x, ∀ x ∈ W, 1 ∈ F

⇒ W is a subspace of V .

(2.3.4) Theorem: A non empty subset W of V is a subspace of V if and

only if αx+ βy ∈ W ∀ α, β ∈ F and x, y ∈ V .

Proof: First, we suppose that W is a subspace. Then W is itself a vector

space. This implies that αx+βy ∈ W ∀ α, β ∈ F and x, y ∈ V . Conversely,

suppose that αx+ βy ∈ W ∀ α, β ∈ F and ∀ x, y ∈ V...........(1).

We shall show that W is a subspace of V . For this, (i) put α = 1 and β = −1

in (1) we get x− y ∈ W, ∀ x, y ∈ W .
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Similarly, put β = 0 in (1) we get αx ∈ V, forall α ∈ F and ∀ x ∈ V .

Therefore by the above theorem W is a subspace of V .

(2.3.5) Theorem: Let W1 and W2 be two subspaces of a vector space V .

Then W1 ∩W2 is also a subspace of V but the W1 ∪W2 need not be a subspace

of V .

Proof. Since 0 ∈ W1∩W2, so W1∩W2 6= φ. Let x, y ∈ W1∩W2 and α, β ∈ F .

Then x, y ∈ W1 and x, y ∈ W2

⇒ αx+ βy ∈ W1 and αx+ βy ∈ W2 (because W1, W2 are subspaces).

⇒ αx+ βy ∈ W1 ∩W2

⇒ W1 ∩W2 is a subspace of V .

Cosider V = R2 be a vector space over R. Let W1 = {(x1, 0)|x1 ∈ R} and

W2 = {(0, x2)|x2 ∈ R} be two subsets of V . Then we shall prove that W1 and

W2 are subspaces of V and W1 ∪W2 is not a subspace of V .

For this, let α, β ∈ R and x, y ∈ W1. Then αx + βy = α(x1, 0) + β(y1, 0) =

(αx1, 0) + (βy1, 0) = (αx1 + βy1, 0) ∈ W1

⇒ αx+ βy.

Similarly, let α, β ∈ R and x, y ∈ W2.

Then αx+ βy = α(0, x1) + β(0, y1) = (0, αx1 + βy1) ∈ W2

⇒ αx+ βy ∈ W2.

Now (1, 0) ∈ W1 ∪W2 and (0, 1) ∈ W1 ∪W2 but (1, 0) + (0, 1) = (1, 1) /∈

W1 ∪W2.

This shows that W1 ∪W2 is not a subspace of V .

(2.3.6) Theorem: Let W1 and W2 be two subspaces of a vector space V (F ).

Then W1 ∪W2 is a subspace of V if and only if either W1 ⊂ W2 or W2 ⊂ W1.

Proof. First, let us suppose that either W1 ⊂ W2 or W2 ⊂ W1. When

W1 ⊂ W2, then W1∪W2 = W2, which is a subspace of V . Similarly if W2 ⊂ W1,
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then W1 ∪W2 = W1 which is a subspace of V . This implies that W1 ∪W2 is a

subspace of V .

Conversely, suppose that W1∪W2 is a subspace of V . Then we shall show that

either W1 ⊂ W2 or W2 ⊂ W1.

For this, suppose that W1 6⊂ W2 and W2 6⊂ W1. Then there exists x ∈ W1 but

x /∈ W2 and y ∈ W2 but y /∈ W1 ⇒ x, y ∈ W1 ∪W2.

Since W1 ∪W2 is a subspace of V , therefore, x− y ∈ W1 ∪W2

⇒ either x− y ∈ W1 or x− y ∈ W2.

When x− y ∈ W1, then x− (x− y) ∈ W1 (because x ∈ W1)

⇒ y ∈ W1, which is a contradiction to the fact that y /∈ W1. Similarly, when

x− y ∈ W2 ⇒ y + (x− y) ∈ W2 (because y ∈ W2)

⇒ x ∈ W2, which is a contradiction to the fact that x /∈ W2. This implies that

our supposition is wrong.

Hence, either W1 ⊂ W2 or W2 ⊂ W1.

(2.3.7) Theorem: Let W1 and W2 be two subspaces of a vector space V (F ).

Then W1 +W2 = {x1 + y1|x1 ∈ W1, y1 ∈ W2} is also a subspace of V .

Proof. Since 0 + 0 = 0 in V , so 0 ∈ W1 +W2 ⇒ W1 +W2 6= φ.

Let u, v ∈ W1 + W2 and α, β ∈ F . Then u = x1 + y1 and v = x2 + y2, where

x1, x2 ∈ W1 and y1, y2 ∈ W2.

Now, αu+ βv = α(x1 + y1) + β(x2 + y2)

= (αx1 + βx2) + (αy1 + βy2) ∈ W1 +W2

⇒ αu+ βv ∈ W1 +W2. This shows that W1 +W2 is a subspace of V .

(2.3.8) Theorem: Let V be a vector space over a field F and ∩α∈∆Wα is also

a subspace of V .

Proof. Since Wα 6= φ, for each α ∈ ∆. Therefore, W = ∩α∈∆Wα 6= φ. Now,

let x ∈ W and y ∈ W .
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Then x, y ∈ Wα for each α ∈ ∆. Since Wα is a subspace for each α, we have

x− y ∈ Wα and ax ∈ Wα for each α ∈ ∆.

This implies that x− y ∈ W and ax ∈ W . Hence W is a subspace of V .

Corollary Let S be any subset of a vector space V . Then the intersection of

all subspaces of V containing S is a subspace of V containing S.

Proof Since S ⊂ Wα for each α ∈ ∆. Therefore S ⊂ ∩α∈∆Wα and by theorem

∩α∈∆Wα is a subspace containing S.

(2.4) Examples

1. The intersection of any number of subspaces of a vector space V (F ) is a

subspace of V .

Solution Let F = {Wα|α ∈ ∆} be any family of subspaces of V . Then

0 ∈ ∩α∈∆Wα ⇒ ∩α∈∆Wα 6= φ.

Let a, b ∈ F and x, y ∈ ∩α∈∆Wα. Then x, y ∈ Wα, ∀α ∈ ∆

⇒ ax+ by ∈ Wα, ∀α ∈ ∆⇒ ax+ by ∈ ∩α∈∆Wα.

Hence ∩α∈∆Wα is a subspace of V .

2. Let V = Rn be a vector space over R. If W = {x = (x1, . . . , xn)| x1 = 0},

W is a subspace of V .

Solution: Since 0 = (0, 0 . . . , 0) ∈ W . So, W 6= φ.

let x, y ∈ W and α, β ∈ F . Then x = (x1, . . . , xn) and y = (y1, . . . , yn) such

that x1 = 0 = y1..........(1).

Now αx+ βy = (αx1, . . . , αxn) + (βy1, . . . , βyn)

= (αx1 + βy1, . . . , αxn + βyn), using (1) we get

αx+ βy = (αx1 + βy1, . . . , αxn + βyn)

= (0, αx2 + βy2, . . . , αxn + βyn).

This implies that αx+ βy ∈ W . Hence W is a subspace of V .
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3. Let V = F [x] be a vector space of polynomials in x over F and W = Fn[x]

be the subset of all polynomials of degree less than or equal to n. Then W is a

subspace of V .

Solution: Since 0 ∈ W as the deg 0 = −∞. Therefore, W 6= φ.

Now, let α, β ∈ F and f(x), g(x) ∈ V . Then deg(f(x)) ≤ n and deg(g(x)) ≤

n⇒ deg(αf(x) + βg(x)) ≤ n

⇒ αf(x) + βg(x) ∈ W . Hence W is a subspace of V .

3. Let V be a vector space of real valued functions over R. Show that

W = {f(x) ∈ V |d2f
dx2

+ a df
dx

+ bf = 0 where a, b are fixed reals }.

Solution Since O(x) = 0, ∀ x and d2O
dx2

+ adO
dx

+ bO = 0

⇒ O ∈ W ⇒ W 6= φ. Let α, β ∈ R and f(x), g(x) ∈ W

⇒ d2f
dx2

+ a df
dx

+ bf = 0 and d2g
dx2

+ a dg
dx

+ bg = 0 .

Now d2(αf+βg)
dx2

+ad(αf+βg)
dx

+ b(αf +βg) = d2αf
dx2

+adαf
dx

+ bαf + d2βg
dx2

+adβg
dx

+ bβg

= αd2f
dx2

+ aαdf
dx

+ αbf + βdg
dx2

+ aβdg
dx

+ βg

= α(d
2f
dx2

+ a df
dx

+ bf) + β( d
2g
dx2

+ a dg
dx

+ bg) = 0 + 0 = 0

⇒ αf(x) + βg(x) ∈ W . Hence W is a subspace of V .

4. Let V = {A|A = [aij]n×n, aij ∈ R} be a vector space over R. Show that W ,

the set consisting of all the symmetric matrices is a subspace of V .

Solution. Since O = [0]n×n ∈ W ⇒ W 6= φ. Let α, β ∈ F and P, Q ∈ W .

Then P = [pij] and Q = [qij] such that pij = pji and qij = qji.

Now αP+βQ = [αpij]+[βqij] = [αpij+βqij] = [αpji+βqji] = [rij], where rij =

αpji + βqji = αpji + βqji = rji ⇒ [rij] is a symmetric matrix. Therefore,

αP + βQ ∈ W .

5. Let a, b, c be fixed elements of a field F . Show that W = {(x, y, z)|ax +

by + cz = 0;x, y, z ∈ F} is a subspace of F 3.

Solution Since (0, 0, 0) ∈ W as a0 + b0 + c0 = 0, 0 ∈ F
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⇒ W 6= φ.

Let α, β ∈ F and w1, w2 ∈ W . Then w1 = (x1, y1, z1) and w2 = (x2, y2, z2)

such that ax1 + by1 + cz1 = 0 and ax2 + by2 + cz2 = 0.

Now αw1 + βw2 = α(x1, y1, z1) + β(x2, y2, z2)

= (αx1 + βx2, αy1 + βy2, αz1 + βz2) and

a(αx1 + βx2) + b(αy1 + βy2) + c(αz1 + βz2) = α(ax1 + by1 + cz1) + β(ax2 +

by2 + cz2) = α0 + β0 = 0 + 0 = 0

⇒ αw1 + βw2 ∈ W

⇒ W is a subspace of V .

6. Let V = R3 be a vector space over R. Which of the following subsets of V

are subspaces?

(i)W = {(x1, x2, x3)|x1 ≤ 0}

(ii)W1 = {(x1, x2, x3)|x3 is an integer }

(iii)W2 = {(x1, x2, x3)|x1, x2, x3 ∈ Q}

(iv)W3 = {(x1, x2, x3)|x1 ≥ x2 ≥ x3}.

Solution(i) Let (x1, x2, x3) ∈ V . Then x1 ≤ 0. Take α = −2. Then

α(x1, x2, x3) = (αx1, αx2, αx3) = (−2x1, −2x2, −2x3) /∈ W because −2x1 >

0. This shows that W is not a subspace of V .

(ii) Let (x1, x2, x3) ∈ W1. Then x3 is an integer. Now for
√

2 ∈

R,
√

2(x1, x2, x3) = (
√

2x1,
√

2x2,
√

2x3) /∈ W as
√

2x3 is not an integer.

Therefore W1 is not a subspace of V .

(iii) Let (x1, x2, x3) ∈ W2. Then x1, x2, x3 ∈ Q. Now for π ∈

R, π(x1, x2, x3) = (πx1, πx2, πx3), πx1, πx2, πx3 need not be rational num-

bers. Therefore, W2 is not a subspace of V .

(iv) Let (x1, x2, x3) ∈ W3. Then x1 ≥ x2 ≥ x3. Now for α = −1, we have

−1(x1, x2, x3) = (−x1, −x2, −x3) /∈ W3. Therefore, W3 is not a subspace of
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V .

(2.5) Let Us Sum Up: In this lesson we have defined subspace of a vector

space and discussed the critera for a non-empty subset of vector space to be

subspace. Then we have illustrated subspace with various examples.

(2.6) Lesson End Exercise

1. If V1 is a subspace of V2 and V2 is a subspace of V , show that V1 is a

subspace of V .

2. Which of the following spaces are subspaces of Rn? Why?

(i) W1 = {x = (x1, x2, . . . , xn)|x1 > x2}.

(ii) W2 = {x = (x1, x2, . . . , xn)|x1 + x2 + . . .+ xn = 0}.

(iii) W3 = {x = (x1, x2, . . . , xn)|x1 + x2 + . . .+ xn = 1}.

(iv) W4 = {x = (x1, x2, . . . , xn)|x1 = 0 and xn = 0}.

(iv) W5 = {x = (x1, x2, . . . , xn)|x1 = 2x2 + 3x3 + . . .+ nxn}.

Answer (ii), (iv) and (v).

3. Let V = C[0, 1] be the space of continuous functions on [0, 1]. Which of

the following are subspaces of V ? and why?.

(i) W = {x|x ∈ V, x(t) ≥ 0}.

(ii) W1 = {x|x ∈ V, x(t2) = x(t)2}

(iii) W2 = {x|x ∈ V, x(t) = x(−t)}

(iv) W3 = {x|x ∈ V, x(t) is a polynomial of degree 3}.

Answer (iii) and (iv).

4. Show that R2 is not a subspace of a vector space R3. Justify your answer.

5. Let W1 and W2 be two subspaces of V . Then show that W1 + W2 is the

smallest subspace of V containing W1 ∪W2.

(2.7) Quotient Space
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Exercise Let V be a vector space over a field F and W be its subspace. Then

show that the set of cosets of W in V , W ′ = {x + W |x ∈ V } is a vector

space under the operation additions (+) and scalar multiplication defined as

(x+W ) + (y+W ) = (x+ y) +W, ∀ x, y ∈ V and α(x+W ) = αx+W, ∀α ∈

F, x ∈ V respectively.

Solution. Properties under addition +:

(i)+ is binary operation: Let x+W = x′ +W and y+W = y′ +W . Then

x−x′ ∈ W and y−y′ ∈ W ⇒ (x−x′)+(y−y′) ∈ W ⇒ (x+y)−(x′+y′) ∈ W

⇒ (x+ y) +W = (x′ + y′) +W

⇒ (x + W ) + (y + W ) = (x′ + W ) + (y′ + W ). This shows that + is a binar

operation on W ′.

(ii) (x+W + y+W ) + z+W = ((x+ y) +W ) + (z+W ) = ((x+ y) + z) +W

= (x+ (y + z)) +W = x+W + (y +W + z +W ), ∀ x, y, z ∈ V .

(iii) There exists 0 +W ∈ W ′ such that (x+W ) + (0 +W ) = (x+ 0) +W =

x+W, ∀ x+W ∈ W ′.

(iv) For each x + W ∈ W ′ there exists −x + W ∈ W ′ such that (x + W ) +

(−x+W ) = (x− x) +W = 0 +W .

(v) (x+W ) + (y +W ) = (x+ y) +W

= (y + x) +W = (y +W ) + (x+W ), ∀ x, y ∈ V .

Properties under scalar multiplication:

Let α, β ∈ F and x+W, y +W ∈ W ′. Then

(i) (α + β)(x+W ) = (α + β)x+W

= (αx+ βx) +W = (αx+W ) + (βx+W ) = α(x+W ) + β(x+W ).

(ii) α(x+W + y +W ) = α((x+ y) +W ) = α(x+ y) +W

= (αx+ αy) +W = (αx+W ) + (αy +W ) = α(x+W ) + β(y +W ).

(iii) (αβ)(x+W ) = (αβ)x+W = α(βx+W ) = α(β(x+W )).
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(iv) 1(x+W ) = x+W .

Thus, W ′ is a vector space over F .

Definition (2.7.1) Let V be a vector space over a field F and W be its

subspace. Then the space of cosets of W in V is called a quotient space un-

der the addition and scalar multiplication defined as (x + W ) + (y + W ) =

(x+ y) +W, ∀ x, y ∈ V and α(x+W ) = αx+W, ∀α ∈ F, x ∈ V respectively.

It is denoted by V/W .

(2.8) University Model Questions

1. Let U and W be subspaces of V such that W ⊂ U , then prove that U/W is

subspace of V/W .

2. Given a subspace S of a vector space V over F , show how to make the

additive subgroup V/S into a vector space over F .

3. Show that W = {(x1, x2, . . . , xn)|x1 = x2 + x3 + . . .+ xn} is a subspace of

Rn.

4. Show that W = {(x1, x2, . . . , xn)|x1 ≥ 0} is not a subspace of Rn.

(2.9) Suggested Readings:(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-III

Linear dependence and linear independence of set of vectors

3.0 Structure

3.1 Introduction

3.2 Objectives

3.3 Linear dependence and linear independence of vectors

3.3.1− 3.3.3 Definitions

3.3.4− 3.3.6 Theorems

3.4 Examples

3.5 Let Us Sum Up

3.6 Lesson end exercise

3.7 University Model Questions

3.8 Suggested Readings

(3.1) Introduction: In this lesson we shall study the fundamental properties

of vectors or set of vectors i.e whether a set of vectors is linearly independent

or linearly dependent.

(3.2) Objective: The students will learn the geometric properties of vectors

by going through this lesson.

(3.3) Linear dependence and linear independence of vectors

(3.3.1) Definition: Let x1, x2, . . . , xn be elements of a vector space V (F )

and a1, a2, . . . , an ∈ F . Then a1x1 + a2x2 + . . .+ anxn is called a linear com-

bination of x1, x2, . . . , xn.

(3.3.2) Definition: A subset S = {x1, x2, . . . , xn} of a vector space V (F ) is

said to be linearly dependent if there exists scalars α1, α2, . . . , αn not all zero

such that α1x1 + α2x2 + . . .+ αnxn = 0. The vectors x1, x2, . . . , xn are called

linearly dependent vectors.
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(3.3.3) Definition: A subset S = {x1, x2, . . . , xn} of a vector space V (F )

is said to be linearly independent if α1x1 + α2x2 + . . . + αnxn = 0, for αi ∈

F, ∀ i ⇒ α1 = α2 = . . . = αn = 0. The vectors x1, x2, . . . , xn are called

linearly independent vectors.

Remarks: (i) Any subset S ⊂ V which contains a linearly dependent set is

linearly dependent.

For this, let S1 = {x1, . . . , xk} be linearly dependent subset of S =

{x1, . . . , xk, xk+1, . . . , xn}. Then there exists scalars α1, α2, . . . , αk not all

zero such that α1x1 + α2x2 + . . .+ αkxk = 0

⇒ α1x1 + α2x2 + . . .+ αkxk + 0xk+1 + . . .+ 0xn = 0.

This shows that S is linearly dependent.

(ii) Any subset S of V which contains 0 is linearly dependent.

In this case we have a linear combination 1(0) + 0x1 + 0x2 + . . . + 0xn =

0, ∀ xi ∈ S, i = 1, 2, . . . , n⇒ S is linearly dependent.

(iii) Let 0 6= v ∈ V . Then {v} is linearly independent.

For this, suppose that αv = 0. Then either α = 0 or v = 0. Since v 6= 0, so

α = 0. Hence {v} is linearly independent.

(iv) Every subset of linearly independent set is linearly independent.

For this, Suppose contrary that any subset S1 of linearly independent set S

is not linearly independent. Then S1 is L.D. subset of S ⇒ by remark (i) S

is also linearly dependent, which is a contradiction. Hence every subset of a

linearly independent set is linearly independent.

(3.3.4) Theorem: Let V be a vector space over F . Then

(i) the set {x1, x2} is linearly dependent if and only if one is a scalar multiple

of other.

(ii) the set {x1, x2, x3} is linearly dependent if and only if one is a linear
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combination of other two.

Proof. (i) First, let’s suppose that {x1, x2} is linearly dependent.

Then there exists scalars α, β (not both zero) such that αx1 + βx2 = 0.

Suppose that α 6= 0,

then there exists α−1 ∈ F such that α−1(αx1 + βx2) = 0

⇒ α−1αx1 + α−1βx2) = 0⇒ x1 + α−1βx2 = 0⇒ x1 = −α−1βx2. This proves

the direct part.

Conversely, suppose that x1 = kx2 ⇒ x1 − kx2 = 0

⇒ 1(x1) + (−k)x2 = 0, which is a non-trivial linear relation.

This shows that {x1, x2} is linear dependent.

(ii) Suppose that the set {x1, x2, x3} is linearly dependent. Then there exists

scalars α, β, γ (not all zero) such that αx1 + βx2 + γx3 = 0.

Without loss of generality, suppose that α 6= 0. Then there exists α−1 ∈ F

such that α−1(αx1 + βx2 + γx3) = 0

⇒ α−1αx1 + α−1βx2 + α−1γx3 = 0

⇒ x1 + α−1βx2 + α−1γx3 = 0

⇒ x1 = −α−1βx2 − α−1γx3.

This proves the direct part.

Conversely, suppose that one vector is a linear combination of other two, say

x1 = αx2 + βx3

⇒ x1−αx2−βx3 = 0, which is a non trivial linear relation among the vectors.

This implies that the set {x1, x2, x3} is linearly dependent.

(3.3.5) Theorem: Let V be a vector space over F . Then a subset S =

{x1, x2, . . . , xn} is linearly dependent if and only if some element of S is lin-

ear combination of others.

Proof. Suppose that the set S = {x1, x2, . . . , xn} is linearly dependent. Then
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there exists scalars a1, a2, . . . , an ∈ F (not all zero) such that a1x1 + a2x2 +

. . .+ anxn = 0.

Without loss of generality, assume that an 6= 0.

Then there exists an
−1 ∈ F such that

an
−1(a1x1 + a2x2 + . . .+ anxn) = 0

⇒ an
−1a1x1 + an

−1a2x2 + . . .+ an
−1anxn = 0

⇒ an
−1a1x1 + an

−1a2x2 + . . .+ xn = 0

⇒ xn = −an−1a1x1 − an−1a2x2 − · · · − an−1an−1xn−1

⇒ xn = (−an−1a1)x1 + (−an−1a2)x2 + · · ·+ (−an−1an−1)xn−1.

This shows that one vector is a linear combination of others.

Conversely, suppose that one vector is a linear combination of others say

x1 = a2x2 + a3x3 + · · ·+ anxn

⇒ x1 − a2x2 − a3x3 − . . .− anxn = 0

⇒ x1 + (−a2)x2 + (−a3)x3 + . . . + (−an)xn = 0, which is a non trivial linear

relation among the vectors. This implies that the set {x1, x2, . . . , xn} is lin-

early dependent.

(3.3.6) Theorem: Let V be a vector space over F . Then a subset S =

{x1, x2, . . . , xn} of non-zero vectors is linearly dependent if and only if some

vector xm, 2 ≤ m ≤ n can be expressed as a linear combination of its preceed-

ing vectors.

Proof. Suppose that S = {x1, x2, . . . , xn} is linearly dependent. Then there

scalars a1, a2, . . . , an ∈ F (not all zero) such that a1x1 + a2x2 + . . .+ anxn =

0....(1)

Let m be the largest suffix of a for which am 6= 0.

Then equation (1) can be written as a1x1+a2x2+. . .+amxm+0xm+1+. . . 0xn =

0

31



⇒ a1x1 + a2x2 + . . .+ amxm = 0

. If m = 1 , then a1xm = 0 ⇒ xm = 0 which is contradiction to the fact that

all vectors of S are non zero.

Therefore, m > 1 or 2 ≤ m ≤ n. Now, there exists am
−1 ∈ F such that

am
−1(a1x1 + a2x2 + . . .+ amxm) = 0

⇒ (am
−1a1)x1 + (am

−1a2)x2 + . . .+ (am
−1am)xm = 0

⇒ (am
−1a1)x1 + (am

−1a2)x2 + . . .+ xm = 0

⇒ xm = (−am−1a1)x1 + (−am−1a2)x2 + . . .+ (−am−1am−1)xm−1.

This shows that xm is a linear combination of its preceeding vectors. Con-

versely, suppose that some vector xm can be written as linear combination

of its preceeding vectors. Then xm = a1x1 + a2x2 + . . . + am−1xm−1, for

a1, a2, . . . , am ∈ F

⇒ a1x1 + a2x2 + . . .+ am−1xm−1 + (−1)xm + 0xm+1 + . . .+ 0xm = 0

⇒ there exists scalars a1, a2, . . . , am = −1 6= 0, am+1 = . . . = an = 0 not all

zero such that a1x1 + a2x2 + . . .+ anxn = 0. Hence S is linearly dependent.

(3.4) Examples

1. If V = R3, then

S = {(1, 1, 0), (0, −1, 1), (−1, 0, −1)}

is linearly dependent because (1, 1, 0) + (0, −1, 1) + (−1, 0, −1) = (1− 1, 1−

1, 1− 1) = (0, 0, 0).

2. If V = R3, then

S = {(1, 1, 0), (0, −1, −1), (−1, 0, −1)}

is linearly independent (L.I.).

Solution consider a(1, 1, 0) + b(0, −1, −1) + c(−1, 0, −1) = (0, 0, 0)

⇒ (a− c, a− b, −b− c) = (0, 0, 0)
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⇒ a− c = 0, a− b = 0 and − b− c = 0

⇒


1 0 −1

1 −1 0

0 −1 −1



a

b

c

 =


0

0

0



Now,

∣∣∣∣∣∣∣∣∣
1 0 −1

1 −1 0

0 −1 −1

∣∣∣∣∣∣∣∣∣ = 2 6= 0

⇒ therefore the equations have only trivial solution i.e a = 0, b = 0, c = 0.

This shows that S is L.I.

3. Prove that the set

S = {(1, 2, 3), (1, −3, 2), (2, −1, 5)}

is linearly dependent in V = R3.

Solution. Cosider a(1, 2, 3) + b(1, −3, 2) + c(2, −1, 5) = (0, 0, 0) for

a, b, c ∈ R

⇒ (a+ b+ 2c, 2a− 3b− c, 3a+ 2b+ 5c) = (0, 0, 0)

⇒ a+ b+ 2c = 0, 2a− 3b− c = 0 and 3a+ 2b+ 5c = 0

these equations can be written in the matrix form as
1 1 2

2 −3 −1

3 2 5



a

b

c

 =


0

0

0



Now,

∣∣∣∣∣∣∣∣∣
1 1 2

2 −3 −1

3 2 5

∣∣∣∣∣∣∣∣∣ = 1(−15 + 2)− 1(10 + 3) + 2(4 + 9) = 0

⇒ this system of equations have non-trivial solutions.

⇒We get the scalars a, b, c ∈ R not all zero such that a(1, 2, 3)+b(1, −3, 2)+

c(2, −1, 5) = (0, 0, 0).

Therefore, S is linearly dependent.
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4. If x is a linear combination of x1, x2, . . . , xn then show that

x1, x2, . . . , xn, x are linearly dependent.

Solution. We have x = α1x1 + α2x2 + . . .+ αnxn

⇒ α1x1 + α2x2 + . . . + αnxn − 1x = 0 which is a non trivial linear relation.

This shows that x1, x2, . . . , xn are linearly dependent.

5. Let x, y, z be linearly independent vectors in a vector space V (F ). Then

x+ y, y + z, x+ z are also linearly independent.

Solution. Consider α(x+ y) + β(y + z) + γ(x+ z) = 0

⇒ (α + γ)x+ (α + β)y + (β + γ)z = 0

⇒ α + γ = 0, β + γ = 0 and α + β = 0.

Solving these equations, we get α + β = 0 and α− β = 0

⇒ we get α = 0, β = 0 and γ = 0. Hence x + y, y + z, x + z are linearly

independent.

6. Find the condition under which the vectors (b, 1, 0), (1, b, 1), (0, 1, b) are

linearly dependent in R3.

Solution. Let α, β, γ ∈ R such that α(b, 1, 0) + β(1, b, 1) + γ(0, 1, b) = 0

⇒ (αb+ β, α + bβ, β + bγ) = (0, 0, 0)

⇒ αb+ β = 0, α + bβ = 0 and β + bγ = 0.

⇒


b 1 0

1 b 1

0 1 b



α

β

γ

 =


0

0

0

....(∗)

Now,

∣∣∣∣∣∣∣∣∣
b 1 0

1 b 1

0 1 b

∣∣∣∣∣∣∣∣∣ = b(b2 − 1)− b = b3 − 2b

The vectors (b, 1, 0), (1, b, 1), (0, 1, b) are linearly dependent in R3 if the the

above system of equations (∗) have non-trivial solutions.
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That is the system of equations (∗) have non trivial solutions if

∣∣∣∣∣∣∣∣∣
b 1 0

1 b 1

0 1 b

∣∣∣∣∣∣∣∣∣ = 0

⇒ b3 − 2b = 0, which is the required condition.

(3.5) Let Us Sum Up : The main property of elements of vector space is

their linear dependence and linear independence which have been defined and

illustrated with the help of examples in this lesson. With the help of theorems,

more properties of vectors have been explored.

(3.6) Lesson End Exercise

1. Determine whether the following subsets of vector space V = R3 are linearly

independent:

(i) S1 = {(1, 0, 1), (1, 1, 1), (0, 0, 1)}.

(ii) S2 = {(2, −1, 3), (4, 1, −1), (2, 3, −3)}.

(iii) S3 = {(1, 1, 2), (−3, 1, 0), (1, −1, 1), (1, 2, −3)}.

(iv) S4 = {(0, 1, −2), (1, −1, 1), (1, 2, 1)}.

2. Find the condition under which z1 = a+ ιb, z2 = c+ ιd are L.I. over C.

3. Let S = {(2, −1, 0), (1, 2, 1), (0, 2, −1)}. Show that S is linearly indepen-

dent. Express (3, 2, 1) as a linear combination of elements of S.

4. Find k if the vectors


1

−1

3

 ,


1

2

−2

 ,

k

0

1

 are linearly dependent.

5. Let V = F4[x] be a vector space of polynomials of degree less than or equal to

4. Then show that the set of polynomials {1+x, x+x2, x2+x3, x3+x4, x4−1}

are L.D.

35



(3.7) University Model Questions

1. Let V be the vector space of all twice differentaiable functions on [0, 1].

Find all x ∈ V , such that x(t) and x′(t) are linearly dependent.

Hint Since x(t) and x′(t) are linearly dependent, so one can be written as

linear combination of other. Suppose that x′(t) = αx(t).

Then dx(t)
dt

= αx(t)⇒ dx
x

= αdt.

Now, integrating on bothside, we get

log x = αt+ c, c is constant of integration.

2. If x, y, z are linearly independent vectors of V , then show that x + y, y +

z, x+ z are also linearly independent.

(3.8) Suggested text books :(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-IV Linear span of vectors

4.0 Structure

4.1 Introduction

4.2 Objectives

4.3 Linear span

4.3.1− 4.3.2 Definitions

4.3.3− 4.3.4 Theorems

4.4 Examples

4.5 Let Us Sum Up

4.6 Lesson End Exercise

4.7 University Model Questions

4.8 Suggested Readings

(4.1) Introduction : In this lesson, we are introducing a notion of generating

set for a vector space and its properties. Basically the idea is to compute the

minimal generating set for a vector space and it turns out to be unique.

(4.2) Objective : The students will understand the nature of the smallest

vector space containg a non-empty set which turns out to be the linear span of

that non empty set.

(4.3) Linear span of vectors

(4.3.1) Definition Let S be a non-empty subset of a vector space V (F ).

Then the set of all linear combinations of any finite number of elements of S

is called the linear span of S. It is denoted by L(S) or < S > so that

L(S) =

{
n∑
i=1

aixi|ai ∈ F and xi ∈ S, 1 ≤ i ≤ n

}
.

Note If S = φ. Then L(S) = {0}.

(4.3.2) Definition A subset S of a vector space V (F ) is said to be a gen-

erating set of the vector space V if L(S) = V .
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(4.3.3) Theorem Let S be a subset of a vector space V (F ). Then L(S) is

the smallest subspace of V containing S.

Proof. Since 0 = a10 + . . .+ an0 for each ai ∈ F .

Therefore 0 ∈ L(S)⇒ L(S) 6= φ.

Now let x, y ∈ L(S) and α, β ∈ F .

Then

x =
n∑
i=1

aixi

and

y =
m∑
i=1

bjyj

for all ai, bj ∈ F and xi, yj ∈ S.

Now, αx+ βy = α(
∑n

i=1 aixi) + β(
∑m

j=1 bjyj)

=
∑n

i=1 αaixi +
∑m

j=1 βbjyj

= (αa1)x1 + . . .+ (αan)xn + (βb1)y1 + . . .+ (βbm)ym

which is a linear combination of finitely many elements of S. This implies that

αx+ βy ∈ L(S). Therefore L(S) is a subspace of V .

Now, suppose that W is any subspace of V containing S. Then s ∈ W, ∀ s ∈ S.

Since W is a subspace of V , so

n∑
i=1

aisi ∈ W, ∀ ai ∈ F, si ∈ S.

This implies that L(S) ⊂ W . Hence L(S) is the smallest subspace of V con-

taining S.

Corollary. Let S = {x1, x2, . . . , xn} be a finite set.

Then L(S) = {x|
∑n

i=1 aixi|ai ∈ F and xi ∈ S}.

(4.3.4) Theorem Let S and T be any subsets of a vector space V (F ). Then

prove that

(i) S ⊂ L(T )⇒ L(S) ⊂ L(T )
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(ii) S ⊂ T ⇒ L(S) ⊂ L(T )

(iii) S is a subspace of V ⇔ L(S) = S

(iv) L(L(S)) = L(S).

Proof. (i) Let x ∈ L(S). Then x =
∑n

i=1 aixi, ∀ ai ∈ F and xi ∈ S Since

S ⊂ L(T )⇒ xi ∈ L(T ),∀xi ∈ S

⇒
∑n

i=1 aixi ∈ L(T ) as L(T ) is a subspace of V

⇒ L(S) ⊂ L(T ).

(ii) Let x ∈ L(S). Then x =
∑n

i=1 aixi, ∀ ai ∈ F and xi ∈ S. Since

S ⊂ T ⇒ x =
∑n

i=1 aixi, ∀ ai ∈ F and xi ∈ T

⇒ x ∈ L(T ). Hence L(S) ⊂ L(T ).

(iii) Let S be a subspace of V (F ). Then we have to prove that L(S) = S. Since

L(S) is the smallest subspace of V containing S. Therefore S ⊂ L(S)...(1)

Now, let x ∈ L(S). Then there exists x1, x2, . . . , xn ∈ S and a1, a2, . . . , an ∈

F such that

x =
n∑
i=1

aixi, ∀ ai ∈ F and xi ∈ S.

Since S is a subspace of V , so x ∈ S.

L(S) ⊂ S...(2)

Therefore, from (1) and (2), we have L(S) = S.

(iv) Since L(S) is a subspace of V , so by (iii) we have

L(L(S)) = L(S).

(4.4) Examples

1. Let S and T be any subsets of a vector space V (F ). Then

L(S ∪ T ) = L(S) + L(T ).
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Solution. Let x ∈ L(S ∪ T ). Then

x =
n∑
i=1

aixi, ∀ xi ∈ S ∪ T and ai ∈ F ; i = 1, 2 . . . , n

=
∑

ajxj +
∑

akxk ; xj ∈ S and xk ∈ T

⇒ x ∈ L(S) + L(T )

⇒ L(S ∪ T ) ⊂ L(S) + L(T ).....(i).

Conversely, suppose that y ∈ L(S) + L(T ). Then

y =
k∑
i=1

aiyi +
m∑

j=k+1

bjyj , ∀ yi ∈ S, yj ∈ T

=
m∑
i=1

aiyi ∀ yi ∈ S ∪ T

⇒ y ∈ L(S ∪ T )

⇒ L(S) + L(T ) ⊂ L(S ∪ T )....(ii).

Hence, from (i) and (ii) we have L(S ∪ T ) = L(S) + L(T ).

2. Let V = R3. Show that

(1, 7, −4) ∈ L((1, −3, 2), (2, −1, 1)).

Solution. Let (1, 7, −4) = α(1, −3, 2) + β(2, −1, 1). Then

(1, 7, −4) = (α, −3α, 2α) + (2β, −β, β)

= (α + 2β, −3α− β, 2α + β)

⇒ 1 = α + 2β

7 = −3α− β

−4 = 2α + β

Solving these equations, we get α = −3 and β = 2. Therefore (1, 7, −4) =

−3(1, −3, 2) + 2(2, −1, 1)
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⇒ (1, 7, −4) ∈ L((1, −3, 2), (2, −1, 1)).

3. Find the conditions on a, b, c such that

 a b

−b c

 is a linear combination of

the matrices A =

1 1

0 −1

, B =

 1 1

−1 0

 and C =

1 −1

0 0

.

Solution. Let

 a b

−b c

 = αA+ βB + γC.

Then

 a b

−b c

 = α

1 1

0 −1

+ β

 1 1

−1 0

+ γ

1 −1

0 0


 a b

−b c

 =

α α

0 −α

+

 β β

−β 0

+

γ −γ
0 0


 a b

−b c

 =

α + β + γ α + β − γ

−β −α


⇒ a = α + β + γ

b = α + β − γ

−b = −β

c = −α

Solving these equations, we get α = −c, β = b, γ = −c ⇒ −c + b − c = a ⇒

a− b+ 2c = 0, which is the required condition.

4. Find the value of k so that (1, −2, k) becomes a linear combination of

vectors (3, 0, −2) and (2, −1, −5).
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Solution. Let (1, −2, k) = α(3, 0, −2) + β(2, −1, −5). Then

(1, −2, k) = α(3, 0, −2) + β(2, −1, −5)

(1, −2, k) = (3α, 0, −2α) + (2β, −β, −5β)

(1, −2, k) = (3α + 2β, −β, −2α− 5β)

⇒ 3α + 2β = 1

−β = −2

−2α− 5β = k

Solving these equations we get β = 2, α = −1⇒ 2 + (−5)2 = k ⇒ k = −8.

5. Does (1, −3, 5) belong to the linear span of

S = {(1, 2, 1), (1, 1, 1, −1), (4, 5, −2)}?

Solution. Suppose that (1, −3, 5) ∈ L(S). Then (1, −3, 5) = a(1, 2, 1) +

b(1, 1, −1) + c(4, 5, −2)

⇒

(1, −3, 5) = (a, 2a, a) + (b, b, −b) + (4c, 5c, −2c)

(1, −3, 5) = (a+ b+ 4c, 2a+ b+ 5c, a− b− 2c)

⇒ a+ b+ 4c = 1....(i)

2a+ b+ 5c = −3....(ii)

a− b− 2c = 5.....(iii)

Solving these equations (i), (ii) and (iii), we get a+ c = 3.....(iv) and a+ c =

2
3
....(v). From equations (iv) and (v) it is clear that we could not find a, b, c

such that (1, −3, 5) = a(1, 2, 1) + b(1, 1, −1) + c(4, 5, −2).

6. Let V = R[x] be vector space of polynomials over R and S = {x2 − 2x +

5, x+ 3, 2x2 − 3x}. Show that f(x) = x2 + 4x− 3 is an element of L(S).
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Solution Let f(x) = a(x2 − 2x+ 5) + b(x+ 3) + c(2x2 − 3x). Then

x2 + 4x− 3 = a(x2 − 2x+ 5) + b(x+ 3) + c(2x2 − 3x)

= (a+ 2c)x2 + (−2a+ b− 3c)x+ (5a+ 3b)

⇒ a+ 2c = 1...(1)

−2a+ b− 3c = 4...(2)

5a+ 3b = −3...(3)

Solving equations (1) and (2), we get −a+ 2b = 11....(4) . From equations (3)

and (4), we get b = 4⇒ a = −3 and c = 2.

Therefore f(x) = −3(x2 − 2x+ 5) + 4(x+ 3) + 2(2x2 − 3x).

7. Let V = C be a vector space over R. Then show that S = {1, ι} is a

generating set for V .

proof. Since L(S) ⊂ V.........(1).

Now let z ∈ V . Then z = a+ ιb, for , a, b ∈ R

⇒ z = a.1 + bι⇒ z ∈ L(S)....(2).

Therefore, from (1) and (2), we get

V = L(S).

This implies that S is a generating set for V .

8. Let S = {(1, 1, 0), (0, 2, 0)}. Show that W = {(x1, x2, 0)|x1, x2 ∈ R} is

the subspace of R3 generated by S.

Solution. Let x, y ∈ W and a, b ∈ F . Then ax + by = a(x1, x2, 0) +

b(y1, y2, 0) = (ax1 + by1, ax2 + by2, 0) ∈ W as ax1 + by1, ax2 + by2 ∈ R.

Therefore, W is a subspace of V .

Now we shall show that W = L(S). For this, note that S ⊂ W

⇒ L(S) ⊂ W .
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Let x ∈ W . Then x = (x1, x2, 0).

Let x = α(1, 1, 0) + β(0, 2, 0), for α, β ∈ F . Then

(x1, x2, 0) = (α, α + 2β, 0)

⇒ x1 = α

x2 = α + 2β

⇒ β =
x2 − x1

2

This implies x = x1(1, 1, 0) + x2−x1
2

(0, 2, 0)

⇒ x ∈ L(S). Hence W = L(S).

9. What is the subspace generated by (1, 0, 0) and (0, 2, 0) in R3?

Solution. Let S = {(1, 0, 0), (0, 2, 0)}. Then L(S) is the subspace generated

by (1, 0, 0) and (0, 2, 0).

Therefore the required subspace is

L(S) = {(x, y, z)|(x, y, z) = α(1, 0, 0) + β(0, 2, 0) = (α, 2β, 0)}.

This implies that x = α, β = y
2

and z = 0.

Thus the subspace generated by (1, 0, 0) and (0, 2, 0) is given by

{(x, y, z)|x(1, 0, 0) +
y

2
(0, 2, 0)}.

10. Let V be a vector space over a field F and S is a subset of a vector space

V (F ) such that 0 ∈ S. Show that L(S) = L(S − {0}).

Solution.Case-I If S = {0}, then L(S) = {0} and S − {0} = φ

⇒ L(S − {0}) = L(φ) = {0}.

Hence L(S) = L(S − {0}).

Case-II When S 6= {0}. Since S − {0} ⊂ S
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⇒ L(S − {0}) ⊂ L(S)........(1).

Now, let x ∈ L(S). If x = 0, then x ∈ L(S − {0}) and L(S) ⊂ L(S − {0})

and we are done.

If x 6= 0, then

x =
k∑
i=1

aixi, where ai ∈ F, xi ∈ S

for 1 ≤ i ≤ n⇒.

x =
k∑
i=1

aixi +
n∑

i=k+1

ai0,

for xi ∈ S, 1 ≤ i ≤ k

⇒ x =
k∑
i=1

aixi ⇒ x ∈ L(S − {0}).....(2).

Therefore from (1) and (2), we have

L(S) = L(S − {0}).

11. Let V be a vector space over field R and x1, x2 ∈ V . Then

L({x1, x2}) = L({x1 − x2, x1 + x2}).

Proof. We have

L({x1 − x2, x1 + x2}) = {a(x1 − x2) + b(x1 + x2)|a, b ∈ R}

= {(a+ b)x1 + (b− a)x2}

= {αx1 + βx2|α = a+ b and β = b− a}

= {αx1 + βx2|α, β ∈ R}

= L({x1, x2}.
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(4.5) Let Us Sum Up: In this lesson, we have defined span of subset of a

vector space V (F ) which turns out to be the smallest subspace of V and illus-

trated with various examples. The linear span of a subset of a vector space is

also called as generating set for that subspace.

(4.6) Lesson End Exercise

1. Show that S = {(1, 2, 3), (0, 1, 2), (0, 0, 1)} spans V = R3.

2. Find the condition on a, b, c such that

(a, b, c) ∈ L({(1, 2, 3), (−1, 2, 4)}).

3. Express the polynomial f(x) = x3 − 3x2 + x− 7 over R as a linear combi-

nation of the polynomials x3 − 3x2 + 1, 2x3 − 2x+ 5, x− 8.

4. Write the vector x =

3 −1

1 −2

 as a linear combination of the vectors

x1 =

1 1

0 −1

, x2 =

 1 1

−1 0

 and x3 =

1 −1

0 0

.

5. Which of the following polynomials are in < x3, x2 + 2x, x2 + 2, −x+ 1 >

(i) 3x2 + x+ 5 (ii) x3 + 3x2 + 3x+ 7 .

Hint Let 3x2 + x + 5 = a(x3) + b(x2 + 2x) + c(x2 + 2) + d(−x + 1). Then

3x2 + x+ 5 = a(x3) + (b+ c)x2 + (2b− d)x+ (2c+ d)

⇒ a = 0

b+ c = 3

2b− d = 1

2c+ d = 5

Solving these equations, we get b+ c = 3 and b+ c = 3.

46



Take a = 0, b = 1, c = 2, d = 1.

We get 3x2 + x+ 5 = 0(x3) + 1(x2 + 2x) + 2(x2 + 2) + 1(−x+ 1)

⇒ 3x2 + x+ 5 ∈< x3, x2 + 2x, x2 + 2, −x+ 1 >.

(4.7) University Model Questions

1. Let S and S ′ be subsets of vector space V . Then show that

(i)S ⊂ S ′ ⇒ L(S) ⊂ L(S ′)(ii)L(S ∪ S ′) = L(S) + L(S ′).

2. Let V1 and V2 be subspaces of V . Then show that V1 + V2 is the subspace

generated by V1 ∪ V2.

(4.8) Suggested text books :(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Unit-II

Lesson-V Basis and Dimension

5.0 Structure

5.1 Introduction

5.2 Objectives

5.3 Basis and Dimension

5.3.1 Definition of basis

5.3.2 Definition of dimension

5.3.3− 5.3.10 Theorems

5.4 Examples

5.5 Let Us Sum Up

5.6 Lesson End Exercise

5.7 University Model Questions

5.8 Suggested Readings

(5.1) Introduction: In this lesson, we study the computation of invariant of

vector space V (F ) such as number of elements in the minimal generating set

for V . Here the minimal means the smallest set under taking subsets.

(5.2) Objectives:(i) the students shall come to know the fundamental unit of

a vector space.

(ii) knowing this unit of vector space students will know the full vector space,

this unit is known as a basis.

(5.3) Basis and Dimension

(5.3.1) Definition: A subset B of a vector space V (F ) is said to be a basis

of V if (i) L(B) = V and (ii) B is linearly independent.

(5.3.2) Definition: The dimension of a vector space over a field F is defined

by the number of elements in a basis of V . It is denoted by dimF (V ) or dimV .
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(5.3.3) Theorem: A subset B = {x1, x2, . . . , xn} of a vector space V (F ) is

a basis if and only if every x ∈ V can be uniquely expressed as x = a1x1 +

a2x2 + . . .+ anxn, ai ∈ F, 1 ≤ i ≤ n.

Proof Suppose that B = {x1, x2, . . . , xn} is a basis of V . Let x ∈ V has two

representations as x = a1x1 + a2x2 + . . . + anxn = b1x1 + b2x2 + . . . + bnxn.

Then

(a1 − b1)x1 + (a2 − b2)x2 + . . .+ (an − bn)xn = 0

⇒ a1 − b1 = a2 − b2 = . . . = an − bn = 0

(because B is linearly independent)

⇒ a1 = b1, a2 = b2, . . . , an = bn.

Hence, every x ∈ V has the unique linear combination of elements of B.

Conversely, suppose that every x ∈ V can be uniquely expressed as x = a1x1 +

a2x2 + . . .+ anxn, ai ∈ F, 1 ≤ i ≤ n. Then it follows that

V = L(B).

Now, we shall prove that B is linearly independent. For this, consider

a1x1 + a2x2 + · · · + anxn = 0.....(1). Then 0 = 0x1 + 0x2 + . . . + 0xn......(2).

Since 0 ∈ V has the unique linear combination of elements of B.

Therefore, from (1) and (2), we have a1 = 0 = . . . = an. This implies that B

is linearly independent and hence a basis for V .

Theorem (5.3.4): Let V be a vector space of dimension n. Then any n + 1

vectors of V are linearly dependent.

Proof We shall prove this theorem by induction on n. When n = 1, then

dimV = 1. Suppose that B1 = {e1} is a basis of V and x1, x2 be any two

elements of V . Then x1 = αe1 and x2 = βe1.
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Case I If x1 = 0 or x2 = 0, then 1x1+0x2 = 0 or 0x1+1x2 = 0 is a non-trivial

relation between x1 and x2. This implies that x1, x2 are linearly dependent.

Hence the theorem is true for n = 1.

Case II If x1 6= 0 and x2 6= 0. Then x1 = αe1 and x2 = βe2 such that

α 6= 0, β 6= 0 in F . Now α−1βx1 − x2 = 0 is a non-trivial relation between x1

and x2. This shows that x1, x2 are linearly dependent. Hence the theorem is

true for n = 1.

Now, we assume the theorem for all vector spaces of dimension ≤ (n − 1).

We shall prove it for a vector space of dimension n. For this, let B =

{e1, e2, . . . , en} be a basis for V . Let x1, x2, . . . , xn, xn+1 be any (n + 1)

vectors of V . Then x1 = a11e1 + a12e2 + . . .+ a1nen

x2 = a21e1 + a22e2 + . . .+ a2nen
...

xn = an1e1 + an2e2 + . . .+ annen

xn+1 = a(n+1)1e1 + a(n+1)2 + . . .+ a(n+1)nen

Now consider x′2 = x2 − a11
−1a21x1

= (a22 − a11
−1a21a12)e2 + . . .+ (a2n − a11

−1a21a1n)en

x′3 = x3 − a11
−1a31x1

= (a32 − a11
−1a31a12)e2 + . . .+ (a3n − a11

−1a31a1n)en
...

x′n = xn − a11
−1an1x1

= (an2 − a11
−1an1a12)e2 + . . .+ (ann − a11

−1an1a1n)en

x′n+1 = xn+1 − a11
−1a(n+1)1x1

= (a(n+1)2 − a11
−1a(n+1)1a12)e2 + . . . (a(n+1)n − a11

−1a(n+1)1a1(n+1))en

Let W =< e2, e2, . . . , en > be a subspace generated by {e2, e3, . . . , en}. Since

every subset of a linearly independent set is linearly independent, so W is a
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subspace of V with dimension n− 1.

Therefore, by induction hypothesis the vectors x′2, x
′
3, . . . , x

′
(n+1) are linearly

dependent. This implies that there exists scalars a2, a3, . . . , a(n+1) not all zero

such that a2x
′
2 + a3x

′
3 + . . .+ a(n+1)x

′
(n+1) = 0.

Substutute the values of x′2, x
′
3, . . . , x

′
(n+1), we get a2(x2−a11

−1a21x1)+a3(x3−

a11
−1a31x1) + . . .+ a(n+1)(xn+1 − a11

−1a(n+1)1x1) = 0

⇒ −(a2a
−1
11 a21 + a3a

−1
11 a31 + . . . an+1a

−1
11 a(n+1)1)x1 + a2x2 + . . .+ an+1xn+1 = 0

which is a non-trivial relation among x1, x2, . . . , xn+1.

This shows that x1, x2, . . . , xn+1 are linearly dependent. Hence the theorem is

true for all n ∈ N.

(5.3.5) Theorem: Let V be a vector space over F with dim(V ) = n. Then

B = {x1, x2, . . . , xn} is a basis of V if and only if B is linearly independent.

Proof. First, suppose that B is a basis of V . Then by definition it is linearly

independent. conversly, suppose that B is linearly independent and x ∈ V be

any element. Then x, x1, x2, . . . , xn are linearly dependent.

⇒ there exists scalars α, α1, . . . , αn not all zero such that αx + α1x1 + . . . +

αnxn = 0. Here α 6= 0, otherwise x, x1, x2, . . . , xn will become linearly inde-

pendent, which is not true.

Now, α−1 exists in F ⇒ α−1(αx+ α1x1 + . . .+ αnxn) = 0

⇒ x+ α−1α1x1 + α−1α2x2 + . . .+ α−1αnxn = 0

⇒ x = −α−1α1x1 − α−1α2x2 − . . .− α−1αnxn

⇒ x ∈ L(B).

This shows that V ⊂ L(B) and hence V = L(B). Thus B is a basis of V .

(5.3.6) Theorem (Existence Theorem): Let V be a finite dimentional

vector space over a field F . Then there exists a basis for V .

OR There exists a basis for every vector space.
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Proof Case I If V = {0}, then B = φ is a basis of V .

Case II If V 6= {0}, then there exists 0 6= x1 ∈ V . Consider B1 = {x1}. Then

B1 is a linearly independent subset of V .

If V = L(B1), then B1 is a basis of V . If V 6= L(B1), then there exists

x2 ∈ V such that x2 /∈ L(B1). Consider B2 = {x1, x2}. Then B2 is lin-

early independent subset of V . For this, suppose that B2 is linearly dependent.

Then there exists scalars α, β not both zero such that αx1 + βx2 = 0. Here

β 6= 0, otherwise B2 is linearly independent. Now β−1 exists in F such that

β−1(αx1 + βx2) = 0

⇒ x2 = −(β−1α)x1

⇒ x2 ∈ L(B1), a contradiction. Therefore B2 is linearly independent.

If V = L(B2), then B2 is a basis of V . If V 6= L(B2), then there exists x3 ∈ V

such that x3 /∈ L(B2). Consider B3 = {x1, x2, x3}. Then B2 is linearly in-

dependent subset of V . For this, suppose that B3 is linearly dependent. Then

there exists scalars α, β, γ not all zero such that αx1 + βx2 + γx3 = 0. Here

γ 6= 0, otherwise B3 is linearly independent. Now γ−1 exists in F such that

γ−1(αx1 + βx2 + γx3) = 0

⇒ x3 = −(γ−1α)x1 − (γ−1β)x2

⇒ x3 ∈ L(B2), a contradiction. Therefore B3 is linearly independent.

If V = L(B3), then B3 is a basis of V . If V 6= L(B3), then continuing the above

process. Since V is finite dimensional vector space, so this process terminates

after finite number of steps. That is untill we get a linearly independent subset

B with dimV number of elements. Then L(B) = V .

(5.3.7) Theorem (Extension Theorem): Let V be a vector space of di-

mension n and S = {x1, x2, . . . , xm} be a linearly independent subset of V .

Then S can be extended to form a basis of V .
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Proof. If m = n, then there is nothing to prove. If m < n, then L(S) 6= V .

This implies that there exists xm+1 ∈ V such that xm+1 /∈ L(S). Cosider

S1 = {x1, x2, . . . , xm, xm+1}. Then S1 is linearly independent in V . For this,

suppose S1 is linearly dependent, then there exists scalars a1, a2, . . . , am, am+1

not all zero such that a1x1+a2x2+. . .+amxm+am+1xm+1 = 0. Here, am+1 6= 0

otherwise S1 is linearly independent which is contradiction to our assumption.

Then there exists am+1
−1 ∈ F such that

am+1
−1(a1x1 + a2x2 + . . .+ amxm + am+1xm+1) = 0

⇒ am+1
−1a1x1 + am+1

−1a2x2 + . . .+ am+1
−1amxm + xm+1 = 0

⇒ −am+1
−1a1x1 − am+1

−1a2x2 − . . .− am+1
−1amxm = xm+1

This implies that xm+1 ∈ L(S), a contradiction. Hence S1 is linearly indepen-

dent.

If L(S1) = V , then S1 is a basis of V . If L(S1) 6= V , then there exists xm+2 ∈ V

such that xm+2 6= L(S1). Cosider S2 = {x1, x2, . . . , xm, xm+1, xm+2}. Then

as above, S2 is linearly independent. Again, if L(S2) = V , then S2 is a basis

of V , otherwise, repeat the above process. But this process terminates after

(n − m) steps as the dimension of V is n. That is, we get a linearly inde-

pendent set B = {x1, x2, . . . , xm, xm+1, xm+2, . . . , xn} such that L(B) = V .

Hence there exists a basis for every finite dimensional vector spaces.

(5.3.8) Theorem: Let V be a finite dimensional vector space over F . Then

any two bases of V have the same number of elements.

Proof. Let B1 = {x1, x2, . . . , xm} and B2 = {y1, y2, . . . , yn} be any two

bases of V .

Case I When B1 is linearly independent and B2 is a basis: In this case number

of elements of B1 can not excceed number of elements of B2 because any n+ 1

elements of V are L.D. This implies that m ≤ n.....(1)
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Case II When B2 is linearly independent and B1 is basis: In this case number

of elements of B2 can not excceed number of elements of B1 because any m+1

elements of V are L.D. This implies that n ≤ m.....(2)

From (1) and (2), we have m = n. Hence any two bases of a vector space have

same number of elements.

(5.3.9) Theorem: Let V1 amd V2 be two subspaces of a finite dimensional

vector space V (F ). Then

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2).

Proof. Let B0 = {x1, x2, . . . , xk} be a basis of V1 ∩ V2. Then B0 is

a linearly independent subset of V1 and V2. Therefore, by basis exten-

sion theorem, B0 can be extended to form bases of V1 and V2. Let B1 =

{x1, x2, . . . , xk, xk+1, . . . , xm} and B2 = {x1, x2, . . . , xk, x
′
k+1, . . . , x

′
n} be

bases of V1 and V2 respectively. That is, dimV1 = m, dimV2 = n and

dim(V1 ∩ V2) = k.

Claim: B = {x1, x2, . . . , xk, xk+1, . . . , xm, x
′
k+1, . . . , x

′
n} is a basis of V1+V2.

We first check that B is linearly independent,

for this, consider a1x1 +a2x2 + . . .+akxk+ak+1xk+1 + . . .+amxm+a′k+1x
′
k+1 +

. . .+ a′nx
′
n = 0........(1)

⇒ a1x1+a2x2+. . .+akxk+ak+1xk+1+. . .+amxm = −a′k+1x
′
k+1−. . .−a′nx′n ∈ V2

⇒ a1x1 + a2x2 + . . .+ akxk + ak+1xk+1 + . . .+ amxm ∈ V1 ∩ V2

⇒ a1x1 + a2x2 + . . .+ akxk + ak+1xk+1 + . . .+ amxm = b1x1 + . . .+ bkxk

⇒ (a1 − b1)x1 + (a2 − b2)x2 + . . .+ (ak − bk)xk + ak+1xk+1 + . . .+ amxm = 0

⇒ ak+1 = . . . = am = 0 as B1 is linearly independent.

Put these values in (1), we get a1x1+a2x2+. . .+akxk+a
′
k+1xk+1+. . .+anx

′
n = 0

⇒ a1 = a2 = . . . = ak = a′k+1 = . . . = a′n = 0 as B2 is linearly independent.

Hence B is linearly independent.
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Now, let x ∈ V1 + V2. Then x = y + z, where y ∈ V1 and z ∈ V2.

Therefore, y = a1x1 + a2x2 + . . . + akxk + ak+1xk+1 + . . . + amxm and

z = b1x1 + b2x2 + . . .+ bkxk + a′k+1x
′
k+1 + a′nx

′
n.

Now x = a1x1 + a2x2 + . . . + akxk + ak+1xk+1 + amxm + b1x1 + b2x2 + . . . +

bkxk + a′k+1x
′
k+1 + a′nx

′
n

⇒ x = (a1 + b1)x1 + (a2 + b2)x2 + . . . + (ak + bk)xk + ak+1xk+1 + amxm +

a′k+1x
′
k+1 + a′nx

′
n

⇒ x ∈ L(B). This implies that

V = L(B).

Hence B is a basis of V1 + V2

and dim(V1 + V2) = k + (m− k) + (n− k) = n+m− k

⇒ dim(V1 + V2) = dimV1 + dimV2 − dim(V1 ∩ V2).

(5.3.10) Theorem: Let V be a finite dimensional vector space over a field F

and W be its subspace. Then

dim(V/W ) = dimV − dimW.

Proof. Let B1 = {x1, x2, . . . , xk} be a basis of W . Then B1 is a linearly

independent subset of V . Now, by extension theorem B1 can be extended to

form a basis of V . Let B2 = {x1, x2, . . . , xk, xk+1, ..., xn} be a basis of V .

Claim: B = {xk+1 +W, xk+2 +W, . . . , xn +W} is a basis of V/W .

First , we shall prove that B is linearly independent.

For this, consider ak+1(xk+1 +W ) + . . .+ an(xn +W ) = 0 +W

⇒ (ak+1xk+1) +W + . . .+ (anxn) +W = W

⇒ (ak+1xk+1 + . . .+ anxn) +W = W

⇒ (ak+1xk+1 + . . .+ anxn) ∈ W

⇒ ak+1xk+1 + . . .+ anxn = a1x1 + a2x2 + . . .+ akxk
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⇒ a1x1 + a2x2 + . . .+ akxk − ak+1xk+1 − . . .− anxn = 0

⇒ a1 = a2 = . . . = an = 0.

Hence B is linearly independent.

Now, let x + W ∈ V/W be any element. Then x ∈ V ⇒ x = a1x1 + a2x2 +

. . .+ akxk + ak+1xk+1 + . . .+ anxn

⇒ x+W = (a1x1 + a2x2 + . . .+ akxk + ak+1xk+1 + . . .+ anxn) +W

⇒ x+W = (a1x1 + a2x2 + . . .+ akxk + ak+1xk+1 + . . .+ anxn) +W

⇒ x+W = (a1x1 + a2x2 + . . .+ akxk) +W + (ak+1xk+1 + . . .+ anxn) +W

= W + (ak+1xk+1 + . . .+ anxn) +W

= (ak+1xk+1 + . . .+ anxn) +W

= (ak+1xk+1) +W + . . .+ (anxn) +W

= ak+1(xk+1 +W ) + . . .+ an(xn +W ) ∈ L(B)

⇒ x+W ∈ L(B)

⇒ V/W = L(B).

Hence B is a basis of V and

dim(V/W ) = n− k = dimV − dimW.

(5.4) Examples

1. Let V = Rn be a vector space over R. Then B = {e1 = (1, . . . , 0), e2 =

(0, 1, 0, . . . , 0), . . . , en = (0, . . . , 1)} is a basis of V .

Let’s first show that B is linearly independent. For, suppose that a1(1, . . . , 0)+

. . .+ an(0, . . . , 1) = (0, 0, . . . , 0)

⇒ (a1, . . . , an) = (0, 0, . . . , 0) ⇒ a1 = a2 = . . . = an = 0. Therefore

{e1, . . . , en} are linearly independent.

Now, we know that L(B) ⊂ V . Let x ∈ V ⇒ x = (x1, x2, . . . , xn), for

xi ∈ R, ∀i
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⇒ x = x1(1, 0 . . . , 0) + . . .+ xn(0, 0, . . . , 1)

⇒ x ∈ L(B)

⇒ V ⊂ L(B).

Thus, V = L(B) and B is a basis of V . Also, dim(V ) = n.

2. Let V = F [x] be a vector space of polynomials. Then B = {fk(x) = xk|k =

0, 1, 2, . . .} forms a basis for V .

Solution First, B is L.I.

For this we shall show that every finite subset of B is linearly independent i.e

{f0, f1, . . . , fn} is linearly independent

a0f0 + . . .+ anfn = 0

⇒ a0 + a1x+ . . .+ anx
n = 0

⇒ a0 = a1 = . . . an = 0.

Every f(x) ∈ F [x] can be written as f(x) = a0 + a1x+ a2x
2 + . . .

⇒ f(x) ∈ L(B). Hence B is a basis of V and dim(V ) =∞.

3. Let V = Fn[x] be a vector space of polynomials of degree ≤ n. Then

B = {fk(x) = xk|k = 0, 1, 2, . . . , n} forms a basis for V .

Solution. First, we see that B is linearly independent.

For this, we consider a1(1) + a2(x) + . . .+ anx
n = 0 = 0(1) + 0x+ . . .+ 0xn

⇒ a1 = 0 = . . . = an.

This shows that B is linearly independent.

Now, L(S) ⊂ V . Let f(x) ∈ V . Then f(x) = a0 + a1x + . . . + amx
m and

m ≤ n

⇒ f(x) = a0 + a1x+ . . .+ amx
m + 0xm+1 + · · ·+ 0xn

⇒ f(x) ∈ L(S)

⇒ V ⊂ L(S).

Hence V = L(S). The dim(V ) = n+ 1.
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4. Show that the vectors (1, 1, 1), (1, 0, 1) and (1, −1, −1) of R3 form a basis

of R3.

Solution To show that B = (1, 1, 1), (1, 0, 1), (1, −1, −1) form a basis of

V , it is enough to check that B is linearly independent. For this, consider

a(1, 1, 1) + b(1, 0, 1) + c(1, −1, −1) = (0, 0, 0)

⇒ (a+ b+ c, a− c, a+ b− c) = (0, 0, 0)

a+ b+ c = 0

a− c = 0

a+ b− c = 0

⇒


1 1 1

1 0 −1

1 1 −1



a

b

c

 =
[
0 0 0

]

then

∣∣∣∣∣∣∣∣∣
1 1 1

1 0 −1

1 1 −1

∣∣∣∣∣∣∣∣∣ = 2 6= 0

⇒ a = b = c = 0. Hence, B is a basis of V .

(5.5) Let Us Sum Up: In order to understand the vector space structure, it

is enough to understand its basis. So basis of vector space is the integral unit

of vector space. In this lesson we have defined basis and dimension of a vector

space and illustrated these notions with examples. With the existence theorem,

extension theorem, we have observed that every vector space has a basis and

every linearly independent subset of it can be extended to form a basis.

(5.6) Lesson End Excercise

1. Examine whether the following set of vectors in R3 form a basis or not:

(i) (1, 0, −1), (1, 2, 1), (0, −3, 2)
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(ii) (1, 1, 1), (1, 2, 3), (−1, 0, 1)

(iii) (1, 2
5
, −1), (0, 1, 2), (3

4
, −1, 1)

(iv) (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1).

2. Let V = {[aij] : aij ∈ R, 1 ≤ i, j ≤ 2}. Then show that the set
1 0

0 0

 ,
1 0

0 0

 ,
0 0

1 0

 ,
0 0

0 1

 form a basis of V .

3. Show that the dimension of the vector space Q(
√

3) over Q is 2.

4. Extend B = {(1, 2, 5)} to form a basis of R3.

Hint: Since (1, 0, 0) /∈ L(B) as L(B) = {(α, 2α, 5α) : α ∈ F}. ⇒ B1 =

{(1, 2, 5), (1, 0, 0)} is linearly independent. Also, (0, 1, 0) /∈ L(B1). There-

fore, B2 = {(1, 2, 5), (1, 0, 0), (0, 1, 0)} is linearly independent. Hence B2 is

an exended basis of R3.

5.Let V = {f(x) ∈ R[x]| deg(f(x)) ≤ 3} be a vector space of polynomials over

R. Show that dim(V ) = 4.

(5.7) University Model Questions

1. Define a basis of a vecor space V (F ). Show that B =

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis of R3. Find a basis of R3 different

from B.

2. Let V be a finite dimensional vector space over F and W be its sub-

space.Prove that dim(V/W ) = dimV − dimW .

3. Let V1 and V2 be two subspaces of a finite dimensional vector space V . Show

that dim(V1 + V2) = dimV1 + dimV2 − dim(V1 ∩ V2).

(5.8) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-VI Isomorphic vector spaces

6.0 Structure

6.1 Introduction

6.2 Objectives

6.3 Isomorphic vector spaces

5.3.1 Definition of Isomorphic vector spaces

6.3.2− 6.3.5 Theorems

6.4 Examples

6.5 Finite and infinite dimensional vector spaces

6.5.1 Definition

6.5.2 Example

6.6 Let Us Sum Up

6.7 Lesson End Exercise

6.8 University Model Questions

6.9 Suggested Readings

(6.1) Introduction : As we are familiar with the notion of isomorphism of

groups and isomorphism of rings, we can also define isomorphism between two

vector spaces. In the definition of isomorphism between two vector spaces, we

assume the both the vector spaces over the same field. A vector space homo-

morphism is also called as a linear transformation .

(6.2) Objectives: (i) In this lesson, students will learn the algebraically same

vector spaces upto isomorphism

(ii) they will learn how two vector spaces can be differentiated.

(6.3) Isomorphic vector spaces

(6.3.1) Definition: Vector Space Homomorphism or Linear Trans-

formation: Let V and W be vector spaces over the field F . Then a mapping
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T : V → W is said to be a linear transformation or vector space homomor-

phism if

(i) T (x+ y) = T (x) + T (y), ∀ x, y ∈ V

and (ii) T (αx) = αT (x), ∀ x ∈ V , α ∈ F .

A linear transformation T : V (F )→ W (F ) is said to be an isomorphism if

T is one-one and onto. The vector spaces V and W are said to be isomorphic

if there exists an isomorphism between them and can be written as V ∼= W .

(6.3.2) Theorem Let T : V (F ) → W (F ) be a linear transformation. Then

(i) T (0) = 0′(ii) T (−x) = −T (x)(iii) T (x− y) = T (x)− T (y), ∀x, y ∈ V .

Proof (i) We have 0 + 0 = 0⇒ T (0 + 0) = T (0)

⇒ T (0) + T (0) = T (0) + 0′

⇒ T (0) = 0′.

(ii) We have x+ (−x) = 0

⇒ T (x+ (−x)) = T (0)⇒ T (x) + T (−x) = 0′

⇒ T (x) = −T (x).

(iii) T (x− y) = T (x+ (−y)) = T (x) + T (−y) = T (x)− T (y) (by (ii))

(6.3.3) Theorem Let V be a vector space over a field F with dimV = n.

Then V ∼= F n.

proof. Let B = {x1, x2, . . . , xn} be a basis of V . Then every element x of V

can be uniquely written as

x =
n∑
i=1

aixi.

Now define a rule T : V → F n by

T (
n∑
i=1

aixi) = (a1, a2, . . . , an).

(I) T is well-defined function: Let x =
∑n

i=1 aixi and x =
∑n

i=1 bixi. Then∑n
i=1 aixi =

∑n
i=1 bixi
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⇒
∑n

i=1(ai − bi)xi = 0

⇒ ai − bi = 0, ∀ i

⇒ ai = bi, ∀ i

⇒ (a1, a2, . . . , an) = (b1, b2, . . . , bn)

⇒ T (
∑n

i=1 aixi) = T (
∑n

i=1 bixi).

This implies that T is a well-defined function.

(II) T is linear transformation:

T (x+ y) = T (
n∑
i=1

aixi +
n∑
i=1

bixi)

= T (
n∑
i=1

(ai + bi)xi)

= (a1 + b1, a2 + b2, . . . , an + bn)

= (a1, a2, . . . , an) + (b1, b2, . . . , bn)

= T (
n∑
i=1

aixi) + T (
n∑
i=1

bixi)

= T (x) + T (y)

Also,

T (αx) = T (α
n∑
i=1

aixi)

= T (
n∑
i=1

αaixi)

= (αa1, αa2, . . . , αan)

= α(a1, a2, . . . , an)

= αT (
n∑
i=1

aixi)

= αT (x)

Therefore, T is a linear transformation.
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(III) T is one-one: Let

T (
n∑
i=1

aixi) = T (
n∑
i=1

bixi)

(a1, a2, . . . , an) = (b1, b2, . . . , bn)

⇒ ai = bi, ∀ i⇒
n∑
i=1

aixi =
n∑
i=1

bixi.

Hence T is one-one.

(IV) T is onto: For each (a1, a2, . . . , an) ∈ F n, there exists x =
∑n

i=1 aixi ∈

V such that T (
∑n

i=1 aixi) = (a1, a2, . . . , an).

Hence, T is an isomorphism and V ∼= F n.

(6.3.4) Theorem Let V and W be finite dimensional vector spaces over F .

Then dim(V ) = dim(W ) if and only if V ∼= W .

Proof Let us first suppose that dim(V ) = dim(W ) = n(say). Let B1 =

{x1, x2, . . . , xn} and B2 = {y1, y2, . . . , yn} be bases of V and W respectively.

Define a rule T : V → W by

T (
n∑
i=1

aixi) =
n∑
i=1

aiyi.

Then T is a well-defined function as every element in V as well as in W has

the unique representation.

Now, T is linear transformation:

T (
n∑
i=1

aixi +
n∑
i=1

bixi) = T (
n∑
i=1

(ai + bi)xi)

=
n∑
i=1

(ai + bi)yi

=
n∑
i=1

aiyi +
n∑
i=1

biyi

= T (
n∑
i=1

aixi) + T (
n∑
i=1

bixi)
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Also,

T (α
n∑
i=1

aixi) = T (
n∑
i=1

αaixi)

=
n∑
i=1

αaiyi

= α
n∑
i=1

aiyi

= αT (
n∑
i=1

aixi)

T is one-one: Let

T (
n∑
i=1

aixi) = T (
n∑
i=1

bixi)

n∑
i=1

aiyi =
n∑
i=1

biyi

n∑
i=1

(ai − bi)yi = 0

ai − bi = 0

ai = bi, ∀i
n∑
i=1

aixi =
n∑
i=1

bixi

T is onto: For each y =
∑n

i=1 aiyi ∈ W , there exists x =
∑n

i=1 aixi ∈ V

such that T (x) = T (
∑n

i=1 aixi) =
∑n

i=1 aiyi. Hence T is an isomorphism and

V ∼= W .

Conversely, suppose that V ∼= W and T : V → W is an isomorphism. To

show that dimV = dimW , we need to show that the bases of V and W have

the same number of elements. For this, let B = {x1, x2, . . . , xn} be a basis of

V .

Claim: B′ = {T (x1), T (x2), . . . , T (xn)} is a basis of W .
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For, consider a1T (x1) + a2T (x2) + . . .+ anT (xn) = 0′

⇒ T (a1x1) + T (a2x2) + . . .+ T (anxn) = 0′

⇒ T (a1x1 + a2x2 + . . .+ anxn) = T (0)

⇒ a1x1 + a2x2 + . . .+ anxn = 0

⇒ a1 = a2 = . . . = an = 0 as B is linearly independent.

Now, let y ∈ W be any element. Then there exist x ∈ V such that T (x) = y.

This implies that x =
∑n

i=1 aixi and y = T (x) = T (
∑n

i=1 aixi)

=
∑n

i=1 aiT (xi)

⇒ y ∈ L(B′)⇒ V = L(B′).

Hence B′ is a basis of W and dimW = n = dimV .

(6.3.5) Theorem Let V and W be vector spaces over a field F . Then a

mapping T : V → W is a linear transformation if and only if T (αx + βy) =

αT (x) + βT (y), ∀ α, β ∈ F andx, y ∈ V .

Proof. Suppose that T : V → W is a linear transformation. Then T (αx +

βy) = T (αx) + T (βy)

= αT (x) + βT (y)

⇒ T (αx+ βy) = αT (x) + βT (y).

Conversely, suppose that T (αx+ βy) = αT (x) + βT (y)

Put α = 1 = β, the we get T (x+ y) = x+ y.

Now put β = 0, we get T (αx) = T (αx+ 0y) = αT (x) + 0T (y)

= αT (x).

Therefore T is a linear transformation.

(6.4) Examples

1. The mappings O : V → W and I : V → V defined by

O(x) = 0, ∀ x ∈ V
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and

I(x) = x, ∀ x ∈ V

respectively are linear transformations.

For these, we have O(x + y) = 0 = 0 + 0 = O(x) + O(y) and O(αx) = 0 =

α0 = αO(x).

Similarly, I(x + y) = x + y = I(x) + I(y), ∀ x, y ∈ V and I(αx) = αx =

αI(x), ∀α ∈ F .

2. Let V = F n be a vector space over the field F . Then the mapping defined by

T ((a1, a2, . . . , an)) = a1, ∀ ai ∈ F, i = 1, 2, . . . , n is a linear transformation.

For this, T ((a1, a2, . . . , an) + (b1, b2, . . . , bn))

= T (a1 + b1, . . . , an + bn) = T ((a1 + b1, . . . , an + bn)) = a1 + b1

= T (a1, a2, . . . , an) + T (b1, b2, . . . , bn)

and

T (α(a1, a2, . . . , an)) = T (αa1, αa2, . . . , αan)

= αa1

= αT (a1, a2, . . . , an).

3. Let V = F [x] be the vector space of polynomials over a field F and V ′ = F .

Then the mapping T : V → V ′ defined by T (a0 +a1x+a2x
2 + . . .+anx

n) = a0

is a linear transformation. For this,

T ((a0 + a1x + a2x
2 + . . . + anx

n) + (b0 + b1x + b2x
2 + . . . + bnx

n)) = T ((a0 +

b0) + (a1 + b1)x+ (a2 + b2)x2 + . . .+ (an + bn)xn)

= a0 + b0

= T (a0 + a1x+ a2x
2 + . . .+ anx

n) + T (b0 + b1x+ b2x
2 + . . .+ bnx

n).

Now, T (α(a0 + a1x+ . . .+ anx
n)) = T (αa0 + αa1x+ . . .+ αanx

n)

= αa0

= αT (a0 + a1x+ . . .+ anx
n).
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4. Let V = C[0, 1] be the space of real valued continuous functions on [0, 1]

and V ′ = R. Then mapping T : V → V ′ defined by T (x(t)) = x(1
2
), ∀ x ∈ V

is a linear transformation.

For this, we have T (x(t) + y(t)) = T ((x+ y)(t)) = (x+ y)(1
2
)

= x(1
2
) + y(1

2
)

= T (x(t)) + T (y(t)).

Similarly, T (α(x(t))) = T (αx(t))

= αx(1
2
)

= αT (x(t)), ∀x ∈ V and ∀α ∈ F .

5. Let V = C and V ′ = R2 be vector spaces over R. Then the mapping

T : V → V ′ defined by T (a+ ιb) = (a, b) is an isomorphism.

Solution First we shall show that T is a linear transformation. For this,

T ((a+ ιb) + (c+ ιd)) = T ((a+ c) + ι(b+ d))

= (a+ c, b+ d)

= (a, b) + (c, d)

= T (a+ ιb) + T (c+ ιd).

Now, T (α(a+ ιb)) = T (αa+ ιαb)

= (αa, αb)

= α(a, b)

= αT (a+ ιb).

Now, T is one-one

For this, let T (a+ ιb) = T (c+ ιd)

⇒ (a, b) = (c, d)

⇒ a = c and b = d

⇒ a+ ιb = c+ ιd.

Also, T is onto. For this, for each (x, y) ∈ R2 there exists x + ιy ∈ C such
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that T (x+ ιy) = (x, y). Hence T is an isomorphism and C ∼= R2.

6. Let T1 : V → W and T2 : V → W be two linear transformations. Then (i)

the mapping T1 +T2 : V → W defined by (T1 +T2)(x) = T1(x)+T2(x), ∀x ∈ V

is a linear transformation and

(ii) (αT )(x) = αT (x) is also a linear transformation.

Proof First, (T1 + T2)(x+ y) = T1(x+ y) + T2(x+ y)

= T1(x) + T1(y) + T2(x) + T2(y)

= (T1(x) + T2(x)) + (T1(y) + T2(y))

= (T1 + T2)(x) + (T1 + T2)(y).

Now, let α ∈ F and x ∈ V ,

then (T1 + T2)(αx) = T1(αx) + T2(αx)

= αT1(x) + αT2(x)

= α(T1(x) + T2(x)) = α(T1 + T2)(x).

This shows that T1 + T2 is a linear transformation.

(ii)(αT )(x+ y) = αT (x+ y) = α(T (x) + T (y))

= αT (x) + αT (y) = (αT )(x) + (αT )(y)

= (αT )(x+ y).

Similarly (αT )(ax) = αT (ax) = αaT (x) = aαT (x) = a(αT )(x)

⇒ αT is a linear transformation.

(6.5) Finite dimensional and infinite dimensional vector spaces

(6.5.1) Definition A vector space V over a field F is said to be a finite

dimensional if dim(V ) < ∞ and V is said to be an infinite dimensional if

dim(V ) is not finite.

(6.5.2) Example The vector space R over Q is not finite dimensional.
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Solution Suppose that R is a finite dimensional vector space over Q. Then

R ∼= Qn

which in not true because Qn is countable set whereas R is uncountable. There-

fore, R is an infinte dimensional vector space over Q.

(6.6) Let Us Sum Up In this lesson, we defined vector space homomorphism

and vector space isomorphism, then explored various properties of homomor-

phism. Then illustrated this notion with the help of examples. In the end, the

finite and infinite dimensional vector spaces have also been discussed.

(6.7) Lesson End Exercise

1. Let V = F n+1 and W = Fn[x], the space of all polynomials of degree atmost

n. Define the mapping T : V → W by T (a0, a1, . . . , an) = a0 + a1x + a2x
2 +

. . .+ anx
n. Show that T is an isomorphism.

2. Let V =


a −b
b a

 | a, b ∈ R

 and V ′ = {a + ib | a, b ∈ R} be vector

spaces over R. Then show that V ∼= V ′.

3. Let V = {(x1, x2, 0)|x1, x2 ∈ R} be a subspace of R3. Then show that

V ∼= R2.

4. Let V and W be two vector spaces over a field F . Then the set L(V, W ) of

all linear transformations of V in W forms a vector space over F under the

operations + and scalar multiplication defined as

(T1 + T2)(x) = T1(x) + T2(x) and (αT )(x) = αT (x)

respectively.

Solution. Properties under +:
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(i) Let T1, T2 ∈ L(V, W ). Then T1(αx+ βy) = αT1(x) + βT1(y)

and T2(αx + βy) = αT2(x) + βT2(y)∀ x, y ∈ V and ∀α, β ∈ F Now, (T1 +

T2)(αx+ βy) = T1(αx+ βy) + T2(αx+ βy)

= αT1(x) + βT1(y) + αT2(x) + βT2(y)

= α(T1(x) + T2(x)) + β(T1(y) + T2(y))

= α(T1 + T2)(x) + β(T1 + T2)(y)

⇒ (T1 + T2)(αx+ βy) = α(T1 + T2)(x) + β(T1 + T2)(y).

(ii) Let T1, T2, T3 ∈ L(V, W ).

Then ((T1 + T2) + T3)(x) = (T1 + T2)(x) + T3(x)

= (T1(x) + T2(x)) + T3(x)

= T1(x) + (T2(x) + T3(x))

= T1(x) + (T2 + T3)(x)

= (T1 + (T2 + T3))(x)

⇒ (T1 + T2) + T3 = T1 + (T2 + T3).

(iii) Define O : V → W by O(x) = 0, ∀ x in V .

Then O(αx+ βy) = 0 = α0 + β0 = αO(x) + βO(x)

⇒ O ∈ L(V, W ) such that

(T +O)(x) = O(x) + T (x) = 0 + T (x) = T (x), ∀ T ∈ L(V, W ).

(iv) For each T ∈ L(V, W ), define −T : V → W by (−T )(x) = −T (x). Then

(−T )(αx+ βy) = −T (αx+ βy)

= −(αT (x) + βT (y)) = −αT (x)− βT (y)

= α(−T (x) + β(−T (y))) = α(−T )(x) + β(−T )(y)

⇒ −T ∈ L(V, W ) such that (−T + T )(x) = −T (x) + T (x) = 0.

(v) Let T1, T2 ∈ L(V, W ). Then (T1+T2)(x) = T1(x)+T2(x) = T2(x)+T1(x) =

(T2 + T1)(x)

⇒ T1 + T2 = T2 + T1. Thus L(V, W ) is an abelian group under +.
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Properties under scalar multiplication: Let α, β ∈ F and T, T1, T2 ∈

L(V, W ). Then

(i) [(α + β)T ](x) = (α + β)T (x)

= αT (x) + βT (x)

= (αT )(x) + (βT )(x)

= (αT + βT )(x)

⇒ (α + β)T = αT + βT.

(ii) [α(T1 + T2)](x) = α(T1(x) + T2(x))

= αT1(x) + αT2(x)

= (αT1)(x) + (αT2)(x)

= (αT1 + αT2)(x)

⇒ α(T1 + T2) = αT1 + αT2.

(iii) [(αβ)T ](x) = (αβ)T (x)

= α(βT (x))

= α(βT )(x)

⇒ (αβ)T = α(βT ).

(iv) (1T )(x) = 1T (x) = T (x)⇒ 1T = T .

This shows that L(V, W ) is a vector space.

(6.8) University Model Questions

1. Prove that the subset of matrices

a 0

0 0

 in M2(F ) for all a ∈ F field is a

vector space over F , which is isomorphic to the field F .
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2. Show that the linear transformation T : R2 → R defined by T (x, y) = x is

onto but not one-one.

3. Show that the linear transformation T : R2 → R3 defined by T (x, y) =

(x, x− y, x+ y) is one-one but not onto.

(6.9) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-VII Dual space of finite dimensional vector spaces

7.0 Structure

7.1 Introduction

7.2 Objectives

7.3 Linear functionals

7.3.1 Definition of linear functional

7.4 Dual Spaces

7.4.1 Definition of dual space

7.4.2− 7.4.3 Examples

7.5 Let Us Sum Up

7.6 Lesson End Exercise

7.7 Suggested Readings

(7.1) Introduction: As we have proved in the exercises of previous lesson

that L(V, W ) the set of all linear transformations from a vecor space V (F ) to

W (F ) is a vecor space over the field F . Here in this lesson we will study its

particular part i.e L(V, F ) the set of all linear functionals on V which turns

out to be a vector space over F .

(7.2) Objectives In this lesson, we define the dual space of a vector space

and illustrate with Examples.

(7.3) Linear functional

(7.3.1) Definition: A linear transformation f : V → F from a vecor space

V (F ) to the field F is called linear functional on V .

(7.3.2) Example: Let V = R2 be vector space over a field R. Then a map-

ping f : V → R defined by f(x, y) = x−y, is a linear functional on V because

f is a linear transformation.

(7.4) Dual spaces
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(7.4.1) Definition: Let V be a vector space over a field F . Then the vecor

space L(V, F ) of all linear functionals on V is called dual space of V and is

denoted by V ∗ i.e.

V ∗ = {f |f : V → F is linear functional }.

(7.4.2) Example : Let V = R2 be a vector space over R. Then show that its

dual space is given by V ∗ =< (f1, f2)|f1(x, y) = x and f2(x, y) = y >.

Solution Let B = {(1, 0), (0, 1)} be a basis of V . Define the rules f1 : V → R

and f2 : V → R defined by f1(x, y) = a1x + b1y and f2(x, y) = a2x + b2y re-

spectively,

where fi(ej) =

1 if i = j

0 if i 6= j

.

Now, we shall show that for each i = 1, 2, fi is linear functional on V . For

this, f1(a(x, y) + b(x′, y′)) = f1(ax+ bx′, ay + by′)

= a1(ax+ bx′) + b1(ay + by′)

= a(a1x+ b1y) + b(a1x
′ + b1y

′)

= af1(x, y) + bf1(x, y).

Similayly we can see that f2(a(x, y)+b(x′, y′)) = af2(x, y)+bf2(x, y) . There-

fore, f1, f2 are linear functionals on V .

We claim that B∗ = {f1, f2} is a basis of V ∗. First we check that B∗ is linearly

independent, for this cosider α1f1 + α2f2 = O, αi ∈ F, i = 1, 2

⇒ (α1f1 + α2f2)(ei) = O(ei)

⇒ α1f1(e1) + α2f2(e1) = O(e1)

⇒ α1(1) + α2(0) = 0

⇒ α1 = 0

Similarily α1f1(e2) + α2f2(e2) = O(e2)

⇒ α1(0) + α2(1) = 0
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⇒ α2 = 0 Therefore, {f1, f2} is linearly independent. This implies that B∗ is

linearly independent.

Now we shall show that B∗ spans V ∗. For this, let f ∈ V ∗ be any element and

f(xi) = ai for 1 ≤ i ≤ 2.

Then

f(x) = f(
2∑
i=1

αiei) =
2∑
i=1

αif(ei) =
2∑
i=1

αiai.

Now

fi(x) = fi(
2∑
i=1

αjej) =
2∑
i=1

αjfi(ej) = αi.

Therefore

f(x) =
2∑
i=1

aifi(x).

This implies that

f =
2∑
i=1

aifi

Thus V ∗ = L(B∗).

(7.4.3) Example Let V = {a + bx + cx2|a, b, c ∈ R} be a vector space

of polynomials of degree ≤ 2. Let f1(p(t)) =
∫ 1

0
p(t) dt; f2(p(t)) = p′(1) and

f3(p(t)) = p(0) for all p(t) ∈ V . Find the basis {p1, p2, p3} which is dual to

{f1, f2, f3}.

Solution Let p1(t) = a1+b1t+c1t
2, p2(t) = a2+b2t+c2t

2, p3(t) = a3+b3t+c3t
2

be any element of V , where ai, bi, ci are real numbers for i = 1, 2, 3.

Now, f1(p1(t)) =
∫ 1

0
(a1 + b1t+ c1t

2) dt = a1 + b1
2

+ c1
3

f2(p1(t)) = d
dt

(a1 + b1t+ c1t
2)|t=1 = b1 + 2c1

f3(p1(t)) = p1(0) = a1.

Now by the definition of basis of V ∗ as done in above example, we have

f1(p1) = 1, f2(p1) = 0, f3(p1) = 0

⇒ 1 = a1 + b1
2

+ c1
3
, b1 + 2c1 = 0, a1 = 0
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⇒ a1 = 0, b1 = 3, c1 = −3
2

⇒ p1(t) = 3t− 3
2
t2 = 3t− 3t2

2
.

Similarly f1(p2(t)) =
∫ 1

0
(a2 + b2t+ c2t

2) dt = a2 + b2
2

+ c2
3

f2(p2(t)) = d
dt

(a2 + b2t+ c2t
2)|t=1 = b2 + 2c2

f3(p2(t)) = p2(0) = a2

Now by the definition of basis of V ∗ , we have f1(p2) = 0, f2(p2) = 1, f3(p2) =

0

⇒ a2 + b2
2

+ c2
3

= 0, b2 + 2c2 = 1, a2 = 0

⇒ a2 = 0, b2 = −1
2
, c2 = 3

4

⇒ p2(t) = −1
2
t+ 3

4
t2 = −t

2
+ 3t2

4
.

Also, f1(p3(t)) =
∫ 1

0
(a3 + b3t+ c3t

2) dt = a3 + b3
2

+ c3
3

f2(p3(t)) = d
dt

(a3 + b3t+ c3t
2)|t=1 = b3 + 2c3

f3(p3(t)) = p3(0) = a3

Now by the definition of basis of V ∗ , we have f1(p3) = 0, f2(p3) = 1, f3(p3) =

0

⇒ a3 + b3
2

+ c3
3

= 0

b3 + 2c3 = 0

a3 = 1

⇒ a3 = 1, b3 = −3, c3 = 3
2

⇒ p3(t) = 1− 3t+ 3
2
t2.

Thus the required basis for V ∗ is {3t− 3t2

2
, −t

2
+ 3t2

4
, 1− 3t+ 3t2

2
}.

Let Us Sum Up (7.5) In this lesson we have defined linear functional and

dual space of a finite dimensional vector space, then illustrated these concepts

with examples. As we have learnt that knowing the basis of vector space is

enough to know the vector space. Therefore in order to compute the dual space

of given vector space it is enough to compute the basis of it which we have done
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in few examples.

(7.6) Lesson End Excercise

1. Find the dual space of the vector space R3 with respect to the standrad basis.

2. Let V = R3 be a vector space with basis

{(1, −1, 3), (0, 1, −1), (0, 3, −2)}.

Find basis of dual space V ∗.

3. Let B = {(−1, 1, 1), (1, −1, −1), (1, 1, −1)} be a basis of R3. Find basis

of dual space V ∗.

(7.7) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-VIII

Dimension of Dual space of finite dimensional vector space

8.0 Structure

8.1 Introduction

8.2 Objectives

8.3 Dimension of dual space

8.3.1 Theorem

8.4 Dual Basis

8.4.1 Definition of dual space

8.4.2 Theorem

8.4.3− 8.3.4 Corollaries 8.5 Examples

8.6 Let Us Sum Up

8.7 Lesson end exercise

8.8 University Model Questions

8.9 Suggested Readings

(8.1) Introduction: With the given vector space we can construct its dual

space. It is interesting to know the dimension of dual space that turns out to

be same as that of vector space in case of finite dimensional vector spaces.

(8.2) Objectives: In this lesson, the students will learn to compute explicitly

a basis for dual vector space knowing the basis of given vector space.

(8.3) Dimension of dual space

(8.3.1) Theorem: Let V be a finite dimensional vector space over F . Then

dimV = dimV ∗.

Proof Let B = {x1, x2, . . . , xn} be a basis of V . Now, for each i, 1 ≤ i ≤ n,
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define mapping fi : V → F by

fi(
n∑
i=1

αixi) = αi.

Then fi is a linear functional on V , for each i and B∗ = {f1, f2, . . . , fn} is a

basis of V ∗.

For this, let x, y ∈ V and α, β ∈ F , then for each i, fi(αx + βy) =

fi(α
∑n

j=1 αjxj + β
∑n

j=1 βjxj)

= fi(
∑n

j=1(ααj + ββj)xj)

= ααi + ββi

= αfi(
∑n

j=1 αjxj) + βfi(
∑n

j=1 βjxj)

= αfi(x) + βfi(y).

Therefore, for each i, fi is a linear functional.

Further, for each i, j such that 1 ≤ i, j ≤ n we have

fi(xj) =

1 if i = j

0 if i 6= j

.

We claim that B∗ is a basis of V ∗. First we check that B∗ is linearly indepen-

dent, for this cosider

α1f1 + α2f2 + . . .+ αnfn = O, αi ∈ F

⇒ (α1f1 + α2f2 + . . .+ αnfn)(xi) = O(xi)

⇒ α1f1(xi) + α2f2(xi) + . . .+ αnfn(xi) = O

⇒ α1(0) + α2(0) + . . .+ αi(1) + . . .+ αn(0) = 0

⇒ αi = 0 ∀ 1 ≤ i ≤ n.

Therefore, {f1, f2, . . . , fn} is linearly independent. This implies that B∗ is

linearly independent.
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Now we shall show that B∗ spans V ∗. For this, let f ∈ V ∗ be any element and

f(xi) = ai for 1 ≤ i ≤ n. Then

f(x) = f(
n∑
i=1

αixi)

=
n∑
i=1

αif(xi)

=
n∑
i=1

αiai

Now fi(x) = fi(
n∑
i=1

αjxj)

=
n∑
i=1

αjfi(xj)

= αi

⇒ f(x) =
n∑
i=1

aifi(x)

⇒ f =
n∑
i=1

aifi

Hence f ∈ L(B∗). This shows that L(B∗) = V ∗ and B∗ is a basis of V ∗.

Therefore

dimV = dimV ∗.

(8.4) Dual Basis

(8.4.1) Definition Let B = {x1, x2, . . . , xn} be a basis of a finite dimen-

sional vector space V . Then for each 1 ≤ i ≤ n the set of linear functionals

on V defined as

fi(xj) =

1 if i = j

0 if i 6= j
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forms a basis of V ∗ and is known as dual basis of B. It is denoted by

B∗ = {f1, f2, . . . , fn}.

(8.4.2) Theorem Let V be a finite dimensional vecor space over the field

F and 0 6= x ∈ V . Then there exists a linear functional f on V such that

f(x) 6= 0.

Proof Since x 6= 0 in V . Therefore, {x} is a linearly independent suset of V

ans so it can be extended to form a basis of V . Thus, there exists a basis B =

{x1, x2, . . . , xn} of V such that x = x1. If B′ = {f1, f2, . . . , fn} is the dual

basis, then f1(x) = 1 and f1(xi) = 0. This implies thatf1(x) = f1(x1) = 1 6= 0.

Thus there exists f ∈ V ∗ such that f(x) 6= 0.

(8.4.3) Corollary Let V be a finite dimensional vector space over the field

F and f(x) = 0, ∀ f ∈ V ∗. Then x = 0.

Proof Suppose that x 6= 0. Then by the theorem, there exists a linear func-

tional f on V such that f(x) 6= 0 which is a contradiction to the fact that

f(x) = 0, ∀ f ∈ V ∗.

(8.4.4) Corollary Let V be a finite dimensional vector space over the field

F and x, y be two different vectors in V . Then there exists a linear functional

f on V such that f(x) 6= f(y).

Proof Here we have x 6= y ⇒ x − y 6= 0. Then by the theorem (8.2.4), there

exists a linear functional f on V such that

f(x− y) 6= 0⇒ f(x)− f(y) 6= 0

⇒ f(x) 6= f(y).

(8.5) Examples 1. Find dual basis for the basis {(1, 0), (0, 1)} of R2.

Solution Let B = {(1, 0), (0, 1)} = {e1, e2} be a basis of of R2 and
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B∗ = {f1, f2} be its dual basis such that

f1(x, y) = a1x+ b1y

f2(x, y) = a2x+ b2y where fi(ej) =

1 if i = j

0 if i 6= j

Now f1(1, 0) = a1 ⇒ a1 = 1

f1(0, 1) = b1 ⇒ b1 = 0

f2(1, 0) = a2 ⇒ a2 = 0

f2(0, 1) = b2 ⇒ b2 = 1

Therefore f1(x, y) = x and f2(x, y) = y so that B∗ = {x, y} is the required

dual basis.

2. Let B = {(1, −1, 3), (0, 1, −1), (0, 3, −2)} be a basis of R3. Find its

dual basis.

Solution Let B = {e1, e2, e3} = {(1, −1, 3), (0, 1, −1), (0, 3, −2)} be the

given basis of R3. Since the dimension of the vector space is same as the

dimension of its dual space. Therefore the dual basis of B contains 3 elements.

Let B∗ = {f1, f2, f3} be the dual basis of B such that

f1(x) = a1x+ a2y + a3z

f2(x) = b1x+ b2y + b3z

f3(x) = c1x+ c2y + c3z where fi(ej) =

1 if i = j

0 if i 6= j

⇒ f1(e1) = 1, f1(e2) = 0, f1(e3) = 0

⇒ f2(e1) = 0, f2(e2) = 1, f2(e3) = 0
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⇒ f3(e1) = 0, f3(e2) = 0, f3(e3) = 1

f1(e1) = a1 − a2 + 3a3 ⇒ 1 = a1 − a2 + 3a3

f1(e2) = a2 − a3 ⇒ 0 = a2 − a3

f1(e3) = 3a2 − 2a3 ⇒ 0 = 3a2 − 2a3

Solving these equations, we get a1 = 1, a2 = 0, a3 = 0. Therefore f(x, y, z) =

x.

Similarily,

f2(e1) = b1 − b2 + 3b3 ⇒ 0 = b1 − b2 + 3b3

f2(e2) = b2 − b3 ⇒ 1 = b2 − b3

f2(e3) = 3b2 − 2b3 ⇒ 0 = 3b2 − 2b3

Solving these equations, we get b1 = 7, b2 = −2, b3 = −3. Therefore

f2(x, y, z) = 7x− 2y − 3z. Also,

f3(e1) = c1 − c2 + 3c3 ⇒ 0 = c1 − c2 + 3c3

f3(e2) = c2 − c3 ⇒ 0 = c2 − c3

f3(e3) = 3c2 − 2c3 ⇒ 0 = 3c2 − 2c3

Solving these equations, we get c1 = −2, c2 = 1, c3 = 1.

Therefore f3(x, y, z) = −2x + y + z and the required dual basis is B∗ =

{x, 7x− 2y − 3z, −2x+ y + z}.

3. Let V be the vector space of all polynomials in t over R of degree ≤ 2. Let

t1, t2, t3 be distinct real numbers and Ti : V → F be linear functions defined

as Ti(f(x)) = f(ti) for i = 1, 2, 3.

Prove that (i) {T1, T2, T3} is a basis of V ∗.

(ii) Find a basis of V such that {T1, T2, T3} is its dual basis.
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Solution(i) Consider a linear combination αT1 + βT2 + γT3 = O

(αT1 + βT2 + γT3)(i) = O(ei), ∀ i = 1, 2, 3.

αT1(1) + βT2(1) + γT3(1) = 0

⇒ α + β + γ = 0.........(1)

αT1(t) + βT2(t) + γT3(t) = 0

⇒ αt1 + βt2 + γt3 = 0..........(2)

αT1(t2) + βT2(t2) + γT3(t2) = 0

⇒ αt1
2 + βt2

2 + γt3
2 = 0..........(3)

From (1), (2), and (3), we get


1 1 1

t1 t2 t3

t1
2 t2

2 t3
2



α

β

γ

 =


0

0

0

.

Now

∣∣∣∣∣∣∣∣∣
1 1 1

t1 t2 t3

t1
2 t2

2 t3
2

∣∣∣∣∣∣∣∣∣ = (t2 − t1)(t3 − t2)(t3 − t1) 6= 0

⇒ α = β = γ = 0. Hence {T1, T2, T3} is linearly independent. Since

dimV ∗ = 3 so {T1, T2, T3} is a basis of V ∗.

(ii) Let B = {p(x), p2(x), p3(x)} be a basis of V for which B∗ = {T1, T2, T3}

is its dual basis.

Then T1(p1(x)) = 1, T2(p1(x)) = 0, T3(p1(x)) = 0.

⇒ p1(t1) = 1, p1(t2) = 0, p1(t3) = 0

⇒ x− t2, x− t3 are the factors of p1(x). Thus, p1(x) = (x−t2)(x−t3)
(t1−t2)(t1−t3)

.

Similarly, T1(p2(x)) = 0, T2(p2(x)) = 1, T3(p2(x)) = 0.

⇒ p2(t1) = 0, p2(t2) = 1, p2(t3) = 0

⇒ x− t1, x− t3 are the factors of p2(x). Therefore, p2(x) = (x−t1)(x−t3)
(t2−t1)(t2−t3)

.

Also T1(p3(x)) = 0, T2(p3(x)) = 0, T3(p3(x)) = 1.

⇒ p3(t1) = 0, p3(t2) = 0, p3(t3) = 1

⇒ x− t1, x− t2 are the factors of p3(x). Therefore, p3(x) = (x−t1)(x−t2)
(t3−t1)(t3−t2)

.
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(8.6) Let Us Sum Up: We have observed that the dimension of dual space

of a finite dimensional vector space is the same. In this lesson we have defined

dual basis for the given basis of a finite dimensional vector space and explicitly

computed the dual basis for the given basis of a vector space.

(8.7) Lesson End Exercise

1. Find the dual basis of {(1, 0, 0, 0), (0, 1, 0), (0, 0, 1)} of R3.

2. Let B = {(−1, 1, 1), (1, −1, 1), (1, 1, −1)} be a basis of R3. Find dual

basis for B.

3. Find the dual basis of {(1, 1, 2), (0, 2, 1), (0, 0, 5)}.

4. Let V be the vector space of all polynomials over the field R of degree ≤ 1

i.e. V = {a+ bx|a, b ∈ R}. Let F1, F2 be linear functionals on V , defined as

f1(p(x)) =

∫ 1

0

p(x) dx

and

f2(p(x)) =

∫ 2

0

p(x) dx.

Find the basis of V of which dual basis is {f1, f2}.

Solution Let {v1, v2} = {a1 + a2x, b1 + b2x} be the required basis and B∗ =

{f1, f2} be its dual basis. Then f1(v1) = 1, f1(v2) = 0, f2(v1) = 0 and f2(v2) =

1.

Now

f1(a1 + a2x) =

∫ 1

0

(a1 + a2x) dx⇒ 1 = a1 +
a2

2
⇒ 2 = 2a1 + a2

f2(a1 + a2x) =

∫ 2

0

(a1 + a2x) dx⇒ 0 = 2a1 + 2a2
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Solving these equations, we get a1 = 2 and a2 = −2. Similarily

f1(b1 + b2x) =

∫ 1

0

(b1 + b2x) dx⇒ 0 = b1 +
b2

2
⇒ 0 = 2b1 + b2

f2(b1 + b2x) =

∫ 2

0

(b1 + b2x) dx⇒ 1 = 2b1 + 2b2

Solving these equations, we get b1 = −1
2

and b2 = 1. Therefore, the required

basis of V is B = {2− 2x, −1
2

+ x}.

(8.8) University Model Questions

1. Let V = {a+ bx+ cx2|a, b, c ∈ R} be a vector space of polynomials over R

of degree ≤ 2. Let f1, f2, f3 be linear functionals on V , defined as

f1(p(x)) =

∫ 1

0

p(x) dx, f2(p(x)) =

∫ 2

0

p(x) dx, f3(p(x)) =

∫ −1

0

p(x) dx.

Prove that {f1, f2, f3} is a basis of V ∗.

2. Let V (F ) be a vector space of dimension n and v1, v2 be two different vec-

tors in V , then show that there exists f ∈ V ∗ such that f(v1) 6= f(v2).

(8.9) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Unit-III

Lesson-IX Linear Transformations on a vector space

9.0 Structure

9.1 Introduction

9.2 Objectives

9.3 Linear Transformations

9.3.1− 9.3.2 Definitions

9.3.3− 9.3.12 Theorems

9.4 Examples

9.5 Composition of linear Transformations

9.5.1 Definition

9.5.2 Example

9.5.3− 9.5.5 Theorems

9.6 Linear Algebra

9.6.1 Definition

9.6.2 Theorem

9.7 Examples

9.8 Let Us Sum Up

9.9 Lesson end exercise

9.10 University Model Questions

9.11 Suggested Readings

(9.1) Introduction: Analogous to homomorphism in groups and rings, we

can formulate the notion of homomorphism in vector spaces also. These are

usually called linear transformations. In order to define a linear transfor-

mation between two vector spaces, it is necessary to assume both the vector
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spaces over the same field F .

(9.2) Objectives: (i) students will understand the concept of linear transfor-

mation with lot of examples.

(ii) In this lesson the students will understand the algebra of linear transfor-

mations on a vector space.

(9.3) Linear transformations

(9.3.1) Definition: Let V and V ′ be vector spaces over the field F . Then a

mapping T : V → V ′ is said to be a linear transformation if

(i) T (x+ y) = T (x) + T (y), x, y ∈ V

(ii)T (αx) = αT (x), α ∈ F and x ∈ V .

(9.3.2) Definition : Let V be a vector space over the field F . Then the linear

transformation T : V → V is called linear operator on V.

(9.3.3) Theorem : Let V and V ′ be two vector spaces over the field F .

Then the mapping T : V → V ′ is a linear transformation if and only if

T (αx+ βy) = αT (x) + βT (y), ∀ α, β ∈ F and x, y ∈ V .

Proof Already proved in Lesson 6 Theorem (6.1.1).

(9.3.4) Theorem: Let V and V ′ be vector spaces over a field F . Then a

mapping O : V → V ′ defined as O(x) = 0, ∀ x ∈ V is a linear transformation.

Proof Let x, y ∈ V and α ∈ F . Then αx+ βy ∈ V and

O(αx + βy) = 0 = α0 + β0 = αO(x) + βO(y). Hence O is a linear transfor-

mation and it is called as zero transformation.

(9.3.5) Theorem: Let V be a vector space over a field F . Then the mapping

I : V → V defined by I(x) = x, ∀ x ∈ V is a linear transformation (or Linear

operator) on V .

Solution Let x, y ∈ V and α, β ∈ F . Then αx + βy ∈ V . Now

T (αx+ βy) = αx+ βy = αT (x) + βT (y).
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Therefore I is a linear operator called identity operator on V .

(9.3.6) Theorem : Let V, V ′ be vector spaces over a field F and T : V → V ′

be a linear transformation. Then the mapping −T : V → V ′ defined by

(−T )(x) = −[T (x)]∀x ∈ V is a linear transformation.

Proof We have T : V → V ′ is a linear transformation, so T (x) ∈ V ′ for

x ∈ V ⇒ −T (x) ∈ V ′.

Let x, y ∈ V and α, β ∈ F .

Then (−T )(αx+ βy) = −[T (αx+ βy)]

= −[αT (x) + βT (x)]

= −αT (x)− βT (y)

= α(−T (x)) + β(−T (y))

= α[(−T )(x)] + β[(−T )(y)]

⇒ −T is a linear transformation.

(9.3.7) Theorem: Let T : V (F ) → V ′(F ) be a linear transformation. Then

(i) T (0) = 0′ (ii) T (−x) = −T (x)

(iii) T (x− y) = T (x)− T (y), ∀x, y ∈ V (iv) T (mx) = mT (x), ∀ m ∈ Z.

Proof (i), (ii), (iii) already proved in Theorem 6.2.1.

(iv) We shall prove this by induction on m.

Case I When m > 0, For this, let m = 1, then T (1x) = T (x) = 1T (x). So

the result is true for m = 1.

Now assume the result for m = p, p is a positive integer.

i.e. T (px) = pT (x)

Now T ((p+ 1)x) = T (px+ x)

= T (px) + T (x)

= pT (x) + T (x)

= (p+ 1)T (x).

89



Therefore, the result is true for m = (p + 1). Hence by induction, T (mx) =

mT (x), ∀ m ∈ N.

Case II When m = 0, then T (0x) = T (0) = 0′ = 0′T (x).

Therefore the result is true for m = 0.

Case III When m < 0, let m = −p, where p is a positive integer.

Therefore T (mx) = T (−px)

= T (p(−x))

= pT (−x)

= p(−T (x))

= (−p)T (x)

= mT (x)

⇒ T (mx) = mT (x).

Hence the result is true for all m ∈ Z.

(9.3.8) Theorem : Let V and W be vector spaces over the same field F . Let

B = {x1, x2, . . . , xn} be a basis of V and y1, y2, . . . , yn be any elements of

W . Then there exists a unique linear transformation T : V → W such that

T (xi) = yi, 1 ≤ i ≤ n.

Proof Let x ∈ V be any element. Then

x =
n∑
i=1

aixi

is the unique linear combination of elements of basis B. Define a rule T : V →

W such that T (a1x1 + a2x2 + . . .+ anxn) = a1y1 + a2y2 + . . .+ anyn.

Since a1, a2, . . . , an are unique, so the rule T is a well defined mapping.

Now, each xi ∈ V can be expressed as a linear combination of vectors of basis

B i.e xi = 0x1 + . . .+ 1xi + 0xi+1 + . . .+ 0xn.

Therefore T (xi) = 0y1 + . . . 1yi + . . .+ 0yn

⇒ T (xi) = yi, for i = 1, 2, . . . , n.
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T is linear transformation: Let x, x′ ∈ V and α, β ∈ F .

Then

x =
n∑
i=1

aixi and x′ =
n∑
i=1

ai
′xi for ai, ai

′ ∈ F ∀ i.

Now,

T (αx+ βx′) = T

(
α

n∑
i=1

aixi + β

n∑
i=1

ai
′xi

)

= T

(
n∑
i=1

(αai)xi +
n∑
i=1

(βai
′)xi

)

= T

(
n∑
i=1

(αai + βai
′)xi

)

=
n∑
i=1

(αai + βai
′)yi

=
n∑
i=1

(αai)yi +
n∑
i=1

(βai
′)yi

= α
n∑
i=1

aiyi + β
n∑
i=1

ai
′yi

= αT (
n∑
i=1

aixi) + βT (
n∑
i=1

ai
′xi)

= αT (x) + βT (x′)

⇒ T (αx+ βx′) = αT (x) + βT (x′).

Hence T is a linear transformation.

T is unique: Let S : V → W be another linear transformation such that

S(xi) = yi, i = 1, 2, . . . , n.

Let x = a1x1 + a2x2 + . . .+ anxn be an element of V .

S(x) = S(a1x1 + a2x2 + . . .+ anxn)

= a1S(x1) + a2S(x2) + . . .+ anS(xn)

= a1y1 + a2y2 + . . .+ anyn
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= T (x)

⇒ S(x) = T (x), ∀ x ∈ V

Thus T is a unique linear transformation.

(9.3.9) Theorem: Let V and W be vector spaces over the same field F and

T : V → W be a linear transformation. Prove that (i) if x1, x2, . . . , xn are

linearly dependent over F then T (x1), T (x2), . . . , T (xn) are also linearly de-

pendent.

(ii) if x1, x2, . . . , xn are such that T (x1), T (x2), . . . , T (xn) are linearly inde-

pendent, then x1, x2, . . . , xn are also linearly independent.

Proof (i) Since x1, x2, . . . , xn are linearly dependent. Therefore, there exists

scalars α1, α2, . . . , αn not all zero, such that α1x1 + α2x2 + . . .+ αnxn = 0

⇒ T (α1x1 + α2x2 + . . .+ αnxn) = T (0)

⇒ α1T (x1) + α2T (x2) + . . .+ αnT (xn) = T (0)

⇒ α1T (x1) + α2T (x2) + . . .+ αnT (xn) = 0′

Hence T (x1), T (x2), . . . , T (xn) are linearly dependent in W .

(ii) Cosider α1x1 + α2x2 + . . .+ αnxn = 0, for α1, . . . , αn ∈ F . Then

T (α1x1 + α2x2 + . . .+ αnxn) = T (0)

⇒ T (α1x1 + α2x2 + . . .+ αnxn) = T (0)

⇒ α1T (x1) + α2T (x2) + . . .+ αnT (xn) = 0′

⇒ α1T (x1) + α2T (x2) + . . .+ αnT (xn) = 0′

⇒ α1 = α2 = . . . = αn = 0 (because T (x1), T (x2), . . . , T (xn) are L.I).

Hence x1, x2, . . . , xn are linearly independent.

(9.3.10) Theorem : Let V and W be two vector spaces over a field F .

Then the set L(V, W ) of all linear transformations of V in W forms a vec-

tor space over F under the operations + and scalar multiplication defined as

(T1 + T2)(x) = T1(x) + T2(x), ∀ x ∈ V, T1, T2 ∈ L(V, W ) and (αT )(x) =
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αT (x), ∀ x ∈ V and α ∈ F, T ∈ L(V, W ) respectively.

proof Already done in the exercise (6.7) problem number 4 of Lesson-VI.

(9.3.11) Lemma: Let V and V ′ be finite dimensional vector spaces over a

field F and B = {x1, x2, . . . , xn} be a basis of V . Then for any mapping

f : B → V ′ there exists a unique linear transformation T : V → V ′ such that

T (xi) = f(xi), ∀ xi ∈ B, i = 1, 2, . . . , n.

Proof Let x ∈ V be any element. Then

x =
n∑
i=1

aixi.

Define a rule T : V → V ′ by

T (a1x1 + a2x2 + . . .+ anxn) = a1f(x1) + a2f(x2) + · · ·+ anf(xn).

Then clearly, T is a well defined mapping because of the uniqueness of a′is in

the representation of x.

Now we shall show that T is a linear transformation.

For this, let

x =
n∑
i=1

aixi, y =
n∑
i=1

bixi

and α, β ∈ F . Then

T (αx+ βy) = T

(
α

n∑
i=1

aixi + β

n∑
i=1

bixi

)

= T

(
n∑
i=1

(αai)xi +
n∑
i=1

(βbi)xi

)

= T

(
n∑
i=1

(αai + βbi)xi

)

=
n∑
i=1

(αai + βbi)f(xi)
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⇒ T (αx+ βy) =
n∑
i=1

αaif(xi) +
n∑
i=1

βbif(xi)

= α

n∑
i=1

aif(xi) + β

n∑
i=1

bif(xi)

= αT

(
n∑
i=1

aixi

)
+ βT

(
n∑
i=1

bixi

)
= αT (x) + βT (y)

⇒ T (αx+ βy) = αT (x) + βT (y).

Therefore, T is a linear transformation.

Also, T (xi) = T (0x1 + . . .+1xi+ . . . 0xn) = 0f(x1)+ . . . 1f(xi)+ . . .+0f(xi) =

f(xi)

⇒ T (xi) = f(xi), ∀ i.

For the uniqueness,

let S be another linear transformation such that S(xi) = f(xi), ∀ i.

Then S(x) = S(a1x1 + a2x2 + . . .+ anxn)

= a1S(x1) + a2S(x2) + . . .+ anS(xn)

= a1f(x1) + a2f(x2) + . . .+ anf(xn)

= T (a1x1 + a2x2 + . . .+ anxn)

= T (x)⇒ S(x) = T (x), ∀ x. Thus T = S.

Hence T is the unique linear transformation.

(9.3.12) Theorem Let V and W be finite dimensional vector spaces over a

field F . Then the vector space L(V, W ) of all linear transformations of V in

W is also finite dimensional and

dim(L(V, W )) = (dimV )(dimW ).

Proof Let B1 = {x1, x2, . . . , xn} and B2 = {y1, y2, . . . , ym} be bases of V
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and W respectively. Then for 1 ≤ i ≤ n, 1 ≤ j ≤ m, define a mapping

Tij(xp) =

yj if i = p

0 if i 6= p

by the Lemma (9.2.11), Tij is a linear transformation for each i, j.

Claim: B = {Tij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis of L(V, W ). For this,

we first show that B is linearly independent. Let αij be set of m × n scalars,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m such that

n∑
i=1

m∑
j=1

αijTij = O

Now xp ∈ V for each p = 1, 2, . . . , n and O(xp) = 0. Therefore,(
n∑
i=1

m∑
j=1

αijTij

)
(xp) = O(xp)

n∑
i=1

m∑
j=1

αijTij(xp) = 0 ∈ W

m∑
j=1

n∑
i=1

αijTij(xp) = 0

m∑
j=1

αpjyj = 0

αp1y1 + αp2y2 + . . .+ αpmym = 0

⇒ αp1 = αp2 = . . . = αpm = 0, where 1 ≤ p ≤ n

αij = 0, ∀ i, j

Hence B is linearly independent.

Now we shall show that B is spanning set for L(V, W ). For this, let T ∈

L(V, W ) be any element so that T (xp) ∈ W . Then

T (xp) =
m∑
j=1

βpjyj.
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Now cosider

(
n∑
i=1

m∑
j=1

βijTij

)
(xp) =

n∑
i=1

m∑
j=1

βijTij(xp)

=
m∑
j=1

βpjyj

= T (xp)

⇒
n∑
i=1

m∑
j=1

βijTij(xp) = T (xp)

⇒
n∑
i=1

m∑
j=1

βijTij = T

Hence B is a basis of L(V, W ) and

dim(L(V, W )) = mn = (dimV )(dimW ).

(9.4) Examples

1. Show that the following mappings are linear transformations:

(i) T : V3(R)→ V2(R) defined by T (x, y, z) = (x− y + z, 2x)

(ii) T : V (R)→ V (R) defined by T (x+ ιy) = x− ιy

where V (R) = {x+ ιy|x, y ∈ R and ι =
√
−1}.

Solution (i) Let u = (x1, y1, z1), v = (x2, y2, z2) be any elements of V3(R)

and α, β be any real numbers.
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Then αu+ βv = (αx1 + βx2, αy1 + βy2, αz1 + βz2) ∈ V3(R). Now,

T (αu+ βv) = T (αx1 + βx2, αy1 + βy2, αz1 + βz2)

= (αx1 + βx2 − αy1 − βy2 + αz1 + βz2, 2αx1 + 2βx2)

= ((αx1 − αy1 + αz1) + (βx2 − βy2 + βz2), 2αx1 + 2βx2)

= (αx1 − αy1 + αz1, 2αx1) + (βx2 − βy2 + βz2, 2βx2)

= α(x1 − y1 + z1, 2x1) + β(x2 − y2 + z2, 2x2)

= αT (x1, y1, z1) + βT (x2, y2, z2)

⇒ T (αu+ βv) = αT (u) + βT (v)

Hence T is a linear transformation.

(ii) Let u = x1 + ιy1 and v = x2 + ιy2 be any elements of V (R) and α, β be

any real numbers. Then

T (αu+ βv) = T (α(x1 + ιy1) + β(x2 + ιy2))

= T ((αx1 + βx2) + ι(αy1 + βy2))

= (αx1 + βx2)− ι(αy1 + βy2)

= α(x1 − ιy1) + β(x2 − ιy2)

= αT (x1 + ιy1) + βT (x2 + ιy2)

⇒ T (αu+ βv) = αT (u) + βT (v)

Hence T is a linear transformation.

2. Show that the following mappings are not linear transformations:

(i) T : R3 → R2 , defined by T (x, y, z) = (|y|, 0)

(ii)T : R2 → R3 defined by T (x, y) = (x+ 1, 2y, x+ y)

(iii) T : R2 → R defined by T (x, y) = xy.

Solution (i) Let u = (x1, y1, z1) and v = (x2, y2, z2) be any elements of R3.
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Then u+ v = (x1 + x2, y1 + y2z1 + z2) ∈ R3.

Now T (u+ v) = T (x1 + x2, y1 + y2, z1 + z2) = (|y1 + y2|, 0) and

T (u) + T (v) = T (x1, y1, z1) + T (x2, y2, z2)

= (|y1|, 0) + (|y2|, 0) = (|y1| + |y2|, 0) Therefore, we have T (u + v) 6= T (u) +

T (v).

(ii) Let u = (x1, y1) and v = (x2, y2) be any elements of R2.

Then T (u+ v) = T (x1 + x2, y1 + y2) = (x1 + x2 + 1, 2(y1 + y2), x1 + x2 + y1 +

y2)......(i)

and T (u) + T (v) = T (x1, y1) + T (x2, y2)

= (x1 + 1, 2y1, x1 + y1) + (x2 + 1, 2y2, x2 + y2)

= (x1 + x2 + 1 + 2, 2(y1 + y2), x1 + x2 + y1 + y2).........(ii).

Now from (i) and (ii) we have T (u+ v) 6= T (u) + T (v).

Hence T is not a linear transformation.

(iii) Let u = (x1, y1) and v = (x2, y2) be any elements of R2.

Then T (u+ v) = T (x1 + x2, y1 + y2)

= (x1 + x2)(y1 + y2)

= x1y1 + x1y2 + x2y1 + x2y2......(i)

Similarily T (u) + T (v) = T (x1, y1) + T (x2, y2)

= x1y1 + x2y2.......(ii)

Then from (i) and (ii) we get T (u+ v) 6= T (u) + T (v).

Hence T is not a linear transformation.

3. Let V and V ′ be vector spaces over the field F . Show that the mapping

T : V → V ′ is a linear transformation if and only if T (αx+y) = αT (x)+T (y).

Solution First, suppose that T : V → V ′ is a linear transformation. Then it

is obvious that T (αx + y) = T (αx) + T (y) = αT (x) + T (y), forall x, y ∈ V

and α ∈ F .
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Conversely, suppose that T (αx + y) = αT (x) + T (y). Now take α = 1, then

we get T (1x+ y) = 1T (x) + T (y) = T (x) + T (y)

⇒ T (x+ y) = T (x) + T (y).......(1).

Also take y = 0 ∈ V . Then T (αx+ 0) = T (αx) = αT (x)

⇒ T (αx) = αT (x)........(2).

Therefore from (1) and (2) we see that T is a linear transformation.

(9.5) Composition of linear transformations

(9.5.1) Definition: Let U, V, W be vector spaces over the field F and T :

U → V, S : V → W be linear transformations. Then the composite mapping

ST : U → W is defined as

SoT (x) = (ST )(x) = S(T (x)), ∀x ∈ U.

(9.5.2) Example: Let V be vector space of polynomials over reals. Define

linear operators D and T as

D(f(t)) =
df(t)

dt
and T (f(t)) =

∫ t

0

f(t) dt.

Show that DT = I and TD 6= I, where I is the identity operator.

Solution Let f(t) = a0 + a1t+ a2t
2 + . . ., where a′is are real numbers.

Then

(DT )(f(t)) = D[T (f(t))]

= D

[∫ 1

0

f(t) dt

]
= D

[∫ 1

0

(a0 + a1t+ a2t
2 + . . .) dt

]
= D

[(
a0t+ a1

t2

2
+ a2

t3

3
+ . . .

)t
0

]
= a0 + a1t+ a2t

2 + a3t
3 + . . .

= f(t)
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Therefore DT (f(t)) = I(f(t))

⇒ DT = I.

Now

(TD)(f(t)) = T [D(f(t))]

= T [a1 + 2a2t+ 3a3t
2 + . . .]

=

∫ t

0

(a1 + 2a2t+ 3a3t
2 + . . .) dt

=
[
a1t+ a2t

2 + a3t
3 + . . .

]t
0

= a1t+ a2t
2 + a3t

3 + . . . 6= f(t)

Therefore (TD)(f(t)) 6= f(t)

⇒ TD 6= I. Hence DT 6= TD.

(9.5.3) Theorem Let U, V, W be vector spaces over the same field F and

T1 : U → V and T2 : V → W be linear transformations. Then T2T1 : U → W

is a linear transformation.

Proof Since T1 : U → V and T2 : V → W are linear transformations so the

composite mapping T2T1 : U → W is defined by (T2T1)(x) = T2(T1(x)), ∀ x ∈

U .

Let x, y ∈ U and α, β ∈ F . Then

(T2T1)(αx+ βy) = T2[T1(αx+ βy)]

= T2[αT1(x) + βT1(y)]

= T2(αT1(x)) + T2(βT1(y))

= αT2(T1(x)) + βT2(T1(y))

= α(T2T1)(x) + β(T2T1)(y).

Hence T2T1 : U → W is a linear transformation.

(9.5.4) Theorem Let U, V, W be vector spaces over the same field F and
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T1 : U → V and T2 : U → V be linear transformations. Also let S1 : V → W

and S2 : V → be linear transformations. Then

(i)S1(T1 + T2) = S1T1 + S1T2

(ii)(S1 + S2)T1 = S1T1 + S2T1

(iii)α(S1T1) = (αS1)T1 = S1(αT1) for α ∈ F .

Proof(i) For each x ∈ U , we have

[S1(T1 + T2)](x) = S1[(T1 + T2)(x)]

= S1[T1(x) + T2(x)]

= S1(T1(x)) + S1(T2(x))

= (S1T1)(x) + (S1T2)(x)

= [S1T1 + S1T2](x)

Hence S1(T1 + T2) = S1T1 + S1T2.

(ii) For each x ∈ U , we have

[(S1 + S2)T1](x) = (S1 + S2)(T1(x)) = S1(T1(x)) + S2(T1(x))

= (S1T1)(x) + (S2T1)(x) = (S1T1 + S2T1)(x)

Hence (S1 + S2)T1 = S1T1 + S2T1.

(iii) For all x ∈ U , we have

[α(S1T1)](x) = α(S1T1)(x) = αS1(T1(x))

= [(αS1)T1](x).............(1)

Also[S1(αT1)](x) = S1[αT1(x)]

= αS1(T1(x))

= [(αS1)T1](x).........(2)

From (1) and (2), we get α(S1T1) = (αS1)T1 = S1(αT1).

(9.5.5) Theorem: Let R, S, T be three linear operators on a vector space
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V (F ) and O and I be the zero and identity operators on V . Then (i)RO =

OR = O (ii)RI = IR = R (iii)R(S + T ) = RS + ST

(iv)(R+S)T = RT +ST (v)R(ST ) = (RS)T (vi)k(RS) = (kR)S = R(kS).

Proof Let x ∈ V . Then (RO)(x) = R[O(x)] = R(0) = 0 = O(x)

⇒ RO = O.

Similarly (OR)(x) = O(R(x)) = O(y) = 0 = O(x)

⇒ OR = O, where R(x) = y.

(ii)(RI)(x) = R(I(x)) = R(x)

⇒ RI = R and (IR)(x) = I(R(x)) = I(y) = y = R(x)

⇒ IR = R.

(iii)[R(S + T )](x) = R[(S + T )(x)] = R[S(x) + T (x)]

= R(S(x)) +R(T (x))

= (RS)(x) + (RT )(x)

= (RS +RT )(x)

⇒ R(S + T ) = RS +RT .

(iv)[R(ST )](x) = R[(ST )(x)] = R[S(T (x))]

= [RS][T (x)]

= [(RS)T ](x)

⇒ R(ST ) = (RS)T .

(v)[k(RS)](x) = k(RS)(x) = kR(S(x))

= (kR)(S(x)) = [(kR)S](x)
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⇒ k(RS) = (kR)S and

[R(kS)](x) = R((kS)(x))

= R(kS(x))

= kR(S(x))

= k[R(S(x))]

= [k(RS)](x)

Hence k(RS) = (kR)S = R(kS).

(9.6) Linear Algebra

(9.6.1) Definition: Let V be a vector space over the field F . Then V (F )

is said to be an algebra over F if the following properties under the binary

operation mutiplication are satisfied:

(i) For all x, y, z ∈ V, (xy)z = x(yz)

(ii) For all x, y, z ∈ V, x(y + z) = xy + xz and (x+ y)z = xz + yz

(iii) For all x, y ∈ V, α ∈ F, α(xy) = (αx)y = x(αy).

Note:(1) If xy = yx, ∀ x, y ∈ V , then V is a commutative algebra.(2)

If there exists 1 ∈ V such that 1x = x1 = x for x ∈ V , then V (F ) is called

linear algebra with unity.

(9.6.2) Theorem Let V be a vector space over a field F . Then L(V, V ), the

set of linear operators on V is an algebra with unity.

Proof We have already proved in Lesson-VI problem 4 of exercise (6.7) that

L(V, V ) is a vector space and the rest properties of algebra follow from the

theorems (9.5.4− 9.5.5).

(9.7) Examples

1. Let T1 : R3 → R2 and T2 : R3 → R2 be two linear transformations defined

as
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T1(x, y, z) = (3x, y + z);T2(x, y, z) = (2x− 3z, y). Compute T1 + T2, 4T1 −

5T2, T1T2, T2T1 if exist.

Solution (T1 + T2)(x, y, z) = T1(x, y, z) + T2(x, y, z)

= (3x, y + z) + (2x− 3z, y)

= (5x− 3z, 2y + z)

⇒ (T1 + T2)(x, y, z) = (5x− 3z, 2y + z).

Now, (4T1 − 5T2)(x, y, z) = 4T1(x, y, z)− 5T2(x, y, z)

= 4(3x, y + z)− 5(2x− 3z, y)

= (12x− 10x+ 15z, 4y + 4z − 5y)

= (2x+ 15z, 4z − y)

⇒ (4T1 − 5T2)(x, y, z) = (2x+ 15z, 4z − y).

Here T1T2, T2T1 can not be defined.

2. Let T1 and T2 be linear operators on R2 defined by T1(x, y) = (y, x) and

T2(x, y) = (x, 0).

Compute T1 + T2, T2T1, T1T2, T1
2, T2

2.

Solution (T1 + T2)(x, y) = T1(x, y) + T2(x, y)

= (y, x) + (x, 0) = (y + x, x)

⇒ (T1 + T2)(x, y) = (y + x, x).

(T1T2)(x, y) = T1(T2(x, y)) = T1(x, 0) = (x, x)

⇒ T1T2(x, y) = (x, x).

Similarly, (T2T1)(x, y) = T2(T1(x, y)) = T2(y, x) = (y, 0)

⇒ (T2T1)(x, y) = (y, 0).

Now, T1
2(x, y) = T1(T1(x, y)) = T1(y, x) = (x, y)

⇒ T1
2 = I

Also, T2
2(x, y) = T2(T2(x, y)) = T2(x, 0) = (x, 0)

⇒ T2
2(x, y) = (x, 0).
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3. Find a linear transformation which transforms

(3, −1, −2), (1, 1, 0), (−2, 0, 2) ∈ R3

to twice the elementary vectors i.e. 2e1, 2e2, 2e3 in R3, where e1, e2, e3 are

elementary vectors.

Solution Let T : R3 → R3 be a linear transformation such that

T (3, −1, −2) = 2e1, T (1, 1, 0) = 2e2, T (−2, 0, 2) = 2e3.

First, we show that B = {(3, −1, −2), (1, 1, 0), (−2, 0, 2)} is a basis of

V . For this, it is enough to show that B is linearly independent. Consider

a(3, −1, −2) + b(1, 1, 0) + c(−2, 0, 2) = (0, 0, 0)

⇒ (3a+ b− 2c, −a+ b, −2a+ 2c) = (0, 0, 0)

⇒ 3a+ b− 2c = 0

− a+ b = 0

− 2a+ 2c = 0
3 1 −2

−1 1 0

−2 0 2



a

b

c

 =


0

0

0



⇒

∣∣∣∣∣∣∣∣∣
3 1 −2

−1 1 0

−2 0 2

∣∣∣∣∣∣∣∣∣ = 4 6= 0. Hence a = b = c = 0 ⇒ B is linearly independent

and thus a basis of R3.

Now, let (x, y, z) be any element of R3. Then (x, y, z) = α(3, −1, −2) +

β(1, 1, 0) + γ(−2, 0, 2)

⇒ 3α + β − 2γ = x

− α + β = y

− 2α + 2γ = z. Solving these equations we get α = 1
2
(x− y + z), β = y + α

⇒ β = 1
2
(x+ y + z) and γ = 1

2
(x− y + 2z)
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The required linear transformation is given by T (x, y, z) =

T
(

1
2
(x− y + z)(3, −1, −2) + 1

2
(x+ y + z)(1, 1, 0) + 1

2
(x− y + 2z)(−2, 0, 2)

)
= 1

2
(x− y + z)2e1 + 1

2
(x+ y + z)2e2 + 1

2
(x− y + 2z)2e3

= (x− y + z, x+ y + z, x− y + 2z)

⇒ T (x, y, z) = (x− y + z, x+ y + z, x− y + 2z).

4. Show that the following mappings are linear transformations:

(i)T : R3 → R defined by T (x, y, z) = x+ 3y − 4z

(ii)T : R2 → R2 defined by T (x, y) = (0, −x).

Solution (i) Let (x1, y1, z1), (x2, y2, z2) ∈ R3 and α, β ∈ F . Then

α(x1, y1, z1) + β(x2, y2, z2) = (αx1 + βx2, αy1 + βy2, αz1 + βz2) ∈ R3.

Now T (α(x1, y1, z1) + β(x2, y2, z2)) = T (αx1 + βx2, αy1 + βy2, αz1 + βz2)

= αx1 + βx2 + 3(αy1 + βy2)− 4(αz1 + βz2)

= α(x1 + 3y1 − 4z1) + β(x2 + 3y2 − 4z2)

= αT (x1, y1, z1) + βT (x2, y2, z2).

Hence T is a linear transformation.

(9.8) Let Us Sum Up: Basically linear algebra began with the study of linear

equations. In order to define linear algebra we have defined linear transforma-

tions and linear operators on vector space, their composition. Then we have

illustrated them with various examples. At the end with the help of theorems

we could able to define linear algebra i.e. algebra of linear operators. The set

which is having both the structures vector space and ring.

(9.9) Lesson End Exercise

1. Let T : R → R2 defined by T (x) = (2x, 3x). Show that T is a linear

transformation.

2. Let V (R) be a vector space of integrable functions on R. Prove that T :
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V → R defined by

T (f) =

∫ d

c

f(x) dx; c, d ∈ R

is a linear functional.

3. Show that the following mappings are not linear transformations:

(i)T : R2 → R defined by T (x, y) = |2x− 3y|

(ii)T : V (C)→ V (R) defined by T (x+ ιy) = (x3 + y3)
1
3 .

(iii)T : C→ C defined by T (x+ ιy) = x, ∀ x, y ∈ R, where ι =
√
−1.

4. Find a linear transformation T : R2 → R2 such that T (1, 2) = (3, 4) and

T (0, 1) = (0, 0).

Hint (First, check that {(1, 2), (0, 1)} forms a basis for R2 and find the map-

ping).

5. Find a linear transformation T : R2 → R3 such that T (1, 2) = (3, −1, 5)

and T (0, 1) = (2, 1, −1).

6. Find a linear transformation T : R2 → R2 such that T (2, 3) = (1, 2) and

T (3, 2) = (2, 3).

7. Let T : R3 → R2 be a linear transformation. Prove that (T 2−I)(T−3I) = O.

8. Let T : R3 → R2 and S : R2 → R3 be two linear transformations defined by

T (x, y, z) = (x− 3y − 2z, y − 4z) and S(x, y) = (2x, 4x− y, 2x+ 3y). Find

TS, ST . Is product commutative?

9. Let T1 : R3 → R2 and T2 : R2 → R3 be two linear transformations

defined by T1(x, y, z) = (3x, y + z), T2(x, y, z) = (2x − 3z, y). Compute

T1 + T2, 5T1, 4T1 − 5T2, T1T2 and T2T1.

10. Let T : R2 → R2 be LT defined by T (x, y) = (x + y, 2x). Let

f(t) = t2 − 2t+ 3. Find f(T )(x, y).

Hint. f(T )(x, y) = (T 2 − 2T + 3I)(x, y)

= T 2(x, y)− 2T (x, y) + 3I(x, y)
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= T (T (x, y))− 2(x+ y, 2x) + 3(x, y))

= T (x+ y, 2x) + (−2x− y, −2x) + (3x, 3y)

= (3x+ y, 2x+ 2y) + (−2x− y, −2x) + (3x, 3y)

= (4x, 5y)⇒ f(T )(x, y) = (4x, 5y).

(9.10) University Model Questions

1. Define linear transformation. Show that the mapping T : R3 → R3 defined

by T (x, y, z) = (y, −x, −z) is a linear transformation.

2. Define linear transformation. For a linear transformation T show that

(i) T (0) = 0 and (ii)T (x− y) = T (x)− T (y).

3. Let V (F ) be a vector space of all m× n matrices over a field F and let P

and Q be two square matrices of orders m ×m and n × n respectively. Show

that the mapping T : V → V defined as T (A) = PAQ, ∀A ∈ V is a linear

transformation.

4. Define linear transformation. Show that the mapping T : R3 → R3 defined

by T (x, y, z) = (y, −x+ 1, −z) is not a linear transformation.

(9.11) Suggested Readings:(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Lesson-X Matrix representation of Linear Transformation

10.0 Structure

10.1 Introduction

10.2 Objectives

10.3 Matrix representation of a linear transformation

10.3.1 Definition

10.3.2 Theorem

10.4 Examples

10.5 Let Us Sum Up

10.6 Lesson end exercise

10.7 University Model Questions

10.8 Suggested Readings

(10.1) Introduction: In this lesson we establish relationship between linear

transformations and matrices. Then we translate the properties of linear trans-

formations to the corresponding properties of the matrices and vice-versa.

(10.2) Objective: Students will get the feeling about the operations on ma-

trices with the help of the correspondence between linear transformations and

matrices.

(10.3) Matrix representation of a linear transformation

(10.3.1) Definition: An m × n matrix over a field F is an array of an mn

elements of F of the form 
a11 a12 . . . a1n

a21 a22 . . . a2n

...

am1 am2 . . . amn


(10.3.2) Theorem: Let V be an n-dimensional vector space over the field

109



F and W an m-dimensional vector space over the field F . Let B1 =

{x1, x2, . . . , xn} and B2 = {y1, y2, . . . , ym} be bases for V and W respec-

tively. Then for each linear transformation T : V → W , there is an m × n

matrix with entries in F and vice-a-versa.

Proof First, we suppose that T : V → W is a linear transformation. Then

T (x1) = a11y1 + a21y2 + . . . am1ym

T (x2) = a12y1 + a22y2 + . . . am2ym

T (x3) = a13y1 + a23y2 + . . . am3ym
...

T (xn) = a1ny1 + a2ny2 + . . . amnym

Therefore, the matrix corresponding to T is given by

m(T ) =


a11 a12 . . . a1n

a21 a22 . . . a2n

...

am1 am2 . . . amn

 .

Conversely, suppose that A = [aij]m×n be the given matrix and T be the linear

transformation determined by the mn scalars aij.
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Now, let x ∈ V . Then x = α1x1 + α2x2 + . . .+ αnxn, αi ∈ F ∀ i. Therefore

T (x) = T

(
n∑
i=1

αixi

)

=
n∑
i=1

αiT (xi)

=
n∑
i=1

αi

m∑
j=1

ajiyj

=
m∑
j=1

(
n∑
i=1

ajiαi)yj

⇒ T

(
n∑
i=1

αixi

)
=

m∑
j=1

(
n∑
i=1

ajiαi

)
yj

(10.4) Examples

1. Let T be a linear operator on R2 defined by

T (x, y) = (4x− 2y, 2x+ y).

(i) Find the matrix of T relative to the basis B = {(1, 1), (−1, 0)}.

(ii) Also, verify the linear transformation corresponding to the matrix m(T ).

Solution (i) We have a linear operator T on V given by

T (x, y) = (4x− 2y, 2x+ y).

So, T ((1, 1)) = (4− 2, 2 + 1)

= (2, 3)

= 3(1, 1) + 1(−1, 0)

⇒ T (1, 1) = 3(1, 1) + 1(−1, 0)

Similarly T (−1, 0) = (−4, −2)

= −2(1, 1)+2(−1, 0) Therefore the matrix corresponding to the operator

T is given by m(T ) =

3 −2

1 2

.
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(ii) Let T be the operator corresponding to the matrix

3 −2

1 2

 and (x, y) ∈

R2. Then (x, y) = α1(1, 1) + α2(−1, 0)

= (α1 − α2, α1)

⇒ α1 = y, α2 = y − x

⇒ (x, y) = y(1, 1) + (y − x)(−1, 0)

Now

T (x, y) = T

(
2∑
i=1

αiei

)
=

2∑
i=1

αiT (ei)

T (x, y) =
2∑
i=1

αi

2∑
j=1

ajiej =
2∑
j=1

(
2∑
i=1

ajiαi)ej

T

(
2∑
i=1

αiei

)
=

2∑
j=1

(
2∑
i=1

ajiαi

)
ej here α1 = y, α2 = y − x

So,

T (x, y) =
2∑
j=1

(aj1α1 + aj2α2)ej

= (a11α1 + a12α2)e1 + (a21α1 + a22α2)e2

= (3y − 2(y − x))(1, 1) + (y + 2(y − x))(−1, 0)

= (y + 2x)(1, 1) + (3y − 2x)(−1, 0)

= (y + 2x− 3y + 2x, y + 2x)

= (4x− 2y, y + 2x)

⇒ T (x, y) = (4x− 2y, y + 2x)

Hence verified.

2. Find the matrix representation of T : R2 → R2 defined as T (x, y) =
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(3x− 4y, x+ 5y) with respect to the basis B = {(1, 0), (0, 1)}.

Solution We have a linear operator T on V given by T (x, y) = (3x− 4y, x+

5y). So, T (1, 0) = (3, 1)

= α(1, 0) + β(0, 1)

= (α, β)

⇒ (3, 1) = (α, β)

⇒ α = 3, β = 1

T (1, 0) = 3(1, 0) + 1(0, 1).

Similarly T (0, 1) = (−4, 5)

= −4(1, 0) + 5(0, 1).

Therefore the matrix corresponding to the linear operator T is given by m(T ) =3 −4

1 5

.

3. Let V = W = Fn[x] be the vector space of all polynomials of degree ≤ n.

Define a linear transformation T : V → W by T (f) = f ′. Choose the basis

{x1, x2, x3, . . .} is a basis of V (and W ). Then T (1) = 0, T (x) = 1, T (x2) =

2x, . . . , T (xn) = nxn−1.

T (1) = 0 = 01 + 0x+ . . .+ 0xn

T (x) = 1 = 1 + 0x+ 0x2 + . . .+ 0xn

T (x2) = 2x = 01 + 2x+ 0x2 + . . .+ 0xn

...

T (xn) = nxn−1 = 01 + 0x+ . . .+ nxn−1 + 0xn.

Therefore, the matrix corresponding to T is given by

m(T ) =


0 1 0 . . . 0 0

0 0 2 . . . 0 0
...

0 0 0 . . . n 0

 .
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4. Let V = R3 and let T : V → V be the linear transformation defined

by T (x, y, z) = (2x, 4y, 5z). Find the matrix of T with respect to the basis

{(2
3
, 0, 0), (0, 1

2
, 0), (0, 0, 1

4
)} of V .

Solution We have the given linear transformation T (x, y, z) = (2x, 4y, 5z).

So,

T

(
2

3
, 0, 0

)
=

(
4

3
, 0, 0

)
= 2

(
2

3
, 0, 0

)
+ 0

(
0,

1

2
, 0

)
+ 0

(
0, 0,

1

4

)
T

(
0,

1

2
, 0

)
= (0, 2, 0) = 0

(
2

3
, 0, 0

)
+ 4

(
0,

1

2
, 0

)
+ 0

(
0, 0,

1

4

)
T

(
0, 0,

1

4

)
=

(
0, 0,

5

4

)
= 0

(
2

3
, 0, 0

)
+ 0

(
0,

1

2
, 0

)
+ 5

(
0, 0,

1

4

)
.

Therefore the matrix corresponding to T is given by

m(T ) =


2 0 0

0 4 0

0 0 5

 .

5. Let V = R3 and let A =


1 2 3

3 1 −5

0 0 1

 be the matrix of T ∈ L(V, V ) with

respect to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Find the matrix of T with

respect to the basis {(1, 1, 0), (0, 1, 0), (0, 1, 1)}.

Solution Let (x, y, z) ∈ V be any element and T ∈ L(V, V ). Then (x, y, z) =

α1e1 + α2e2 + α3e3, where α1 = x, α2 = y, α3 = z,

e1 = (1, 0, 0), e2 = (0, 1, 0, e3 = (0, 0, 1).

Now the linear transformation corresponding to A w.r.t. the basis {e1, e2, e3}

is given by T (x, y, z) =


1 2 3

3 1 −5

0 0 1



x

y

z

 =


x+ 2y + 3z

3x+ y − 5z

z
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⇒ T (x, y, z) = (x+ 2y + 3z, 3x+ y − 5z, z) .

To find the matrix of T w.r.t. the basis {(1, 1, 0), (0, 1, 0), (0, 1, 1)}, we have

T (1, 1, 0) = (3, 4, 0) = α(1, 1, 0) + β(0, 1, 0) + γ(0, 1, 1)

(α, α + β + γ, γ) = (3, 4, 0)

⇒ α = 3, γ = 0, β = 1

⇒ T (1, 1, 0) = 3(1, 1, 0) + 1(0, 1, 0) + 0(0, 1, 1).......(i)

T (0, 1, 0) = α(1, 1, 0) + β(0, 1, 0) + γ(0, 1, 1)

(2, 1, 0) = (α, α + β + γ, γ)

α = 2, γ = 0, β = −1

T (0, 1, 0) = 2(1, 1, 0)− 1(0, 1, 0) + 0(0, 1, 1).........(ii)

Also T (0, 1, 1) = α(1, 1, 0) + β(0, 1, 0) + γ(0, 1, 1)

(5, −4, 1) = (α, α + β + γ, γ)

α = 5, γ = 1, β = −5

⇒ T (0, 1, 1) = 5(1, 1, 0)− 5(0, 1, 0) + 1(0, 1, 1).......(iii)

From equations (i), (ii), and (iii) we get the matrix corresponding to T as

m(T ) =


3 2 5

1 −1 −5

0 0 1


(10.5) Let Us Sum Up: Matrix is a vector and linear transformation is a

mapping. In this lesson we got the result there is one to one correspondence

between set of linear transformations on finite dimensional vector spaces and

the set of matrices. One can easily understand this correspondence through

various examples done in this lesson and operations on matrices with the help
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of operations on linear transformation.

(10.6) Lesson End Exercise

1. Let T be a linear operator on R3 defined by T (x, y, z) = (2y+z, x−4y, 3x).

Find the matrix of T with respect to basis {(1, 1, 1), (1, 1, 0), (1, 0, 0)} and

verify it with the linear transformation.

2. Find the matrix representation of T : R2 → R2 defined as T (x, y) =

(3x− 4y, x+ 5y) with respect to the basis B = {(1, 0), (0, 1)}.

3. Given the matrix

1
2

1

2
3

4

. Find the linear operator T on R2 with respect to

basis {(1, 0), (1, 1)} corresponding to the given matrix.

4. Let T be a linear operator on R3 defined by T (x, y, z) = (2x − 3y +

4z, 5x − y + 2z, 4x + 7y). Find the matrix of T with respect to basis

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Answers (i)T (x, y, z) = (y + z, x− y, −x− y) (ii)


3 3 3

−6 −6 −2

6 5 −1



(iii)

3 −4

1 5

 (iv) T (x, y) =
(

7x+23y
6

, 2x+10y
3

)
(v)


2 −3 4

5 −1 2

4 7 0

.

(10.7) Model University Questions

1. If matrix of linear operator T on R3 with respect to basis

{(1, 0, 0), (0, 1, 0), (0, 0, 1)} is


0 1 1

1 0 −1

−1 −1 0

. Then what is the matrix
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of T with respect to basis {(0, 1, −1), (1, −1, 1), (−1, 1, 0)}.

2. If the matrix of linear operator T on R3 with respect to the stan-

drad basis is


1 1 −1

−1 1 1

1 −1 1

. Find the matrix corresponding to the basis

{(1, 2, 2), (1, 1, 2), (1, 2, 1)}.

(10.8) Suggested Readings:(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.

(iii) Singh, S. and Zameerudin, Q.,Modern Algebra, Vikas Publishing House

Pvt.Ltd
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Lesson-XI Kernel and Range of Linear Transformation

11.0 Structure

11.1 Introduction

11.2 Objectives

11.3 Kernel and Range a linear transformation

11.3.1− 11.3.2 Definitions

11.3.3 Theorem

11.4 Rank and Nullity of linear transformation

11.4.1 Definition

11.4.2− 11.4.4 Theorems

11.5 Examples

11.6 Let Us Sum Up

11.7 Lesson end exercise

11.8 Model Questions

11.9 Suggested Readings

(11.1) Introduction: If V and W are vector spaces over the same field F

and T : V → W is a linear transformation. Then we look into the subspaces in

V and V ′ and they turn out be in the form of kernel and image of T which we

explain in detail in this lesson. These two concepts are analogus to the kernel

and image of group homomorphism or ring homomorphism

(11.2) Objective : The properties of linear transformation become easy to

understand through kernel and image of linear transformation.

(11.3) Kernel and Range of linear transformation

(11.3.1) Definition : Let V, W be vector spaces over a field F and T : V →

W be a linear transformation. Then the subset {x ∈ V |T (x) = 0′} of V is said

to be a kernel of T . It is denoted by Ker(T ) and Ker(T ) = {x ∈ V |T (x) =

118



0′}. It is also called as Null space of T .

(11.3.2) Definition:( Range of linear transformation): Let V, W be vec-

tor spaces over a field F and T : V → W be a linear transformation. Then

the image of set V under T is called Range of T i.e.

Range(T ) = {w ∈ W |w = T (v) for some v ∈ V }.

(11.3.3) Theorem : Let V, W be vector spaces over a field F and T : V → W

be a linear transformation.Then Ker(T ) and Range(T ) are subspaces of V and

W respectively.

Proof Since T (0) = 0′. So 0 ∈ Ker(T )⇒ Ker(T ) 6= φ.

Now, let x, y ∈ Ker(T ) and α, β ∈ F .

Then T (αx+ βy) = αT (x) + βT (y) = α0′ + β0′ = 0′

⇒ αx+ βy ∈ Ker(T ).

Therefore, Ker(T ) is a subspace of V .

Similarly Range(T ) 6= φ because (T (0) = 0′).

Let x′, y′ ∈ W and α, β ∈ F . Then there exists x, y ∈ V such that x′ = T (x)

and y′ = T (y).

Now αx′ + βy′ = αT (x) + βT (y) = T (αx+ βy)

⇒ αx′ + βy′ ∈ Range(T ). Hence Range(T ) is a subspace of W .

(11.4) Rank and Nullity of linear transformation

(11.4.1) Definition: Let V, W be vector spaces over a field F and T : V → W

be a linear transformation. Then the dimension of the Range(T ) is called the

rank of T and the dimension of Ker(T ) is called the Nullity of T .

(11.4.2) Theorem (Rank-Nullity Theorem): Let V, W be vector spaces

over a field F and T : V → W be a linear transformation. Suppose the

dimension of V is n, then

dimV = Rank(T ) +Nullity(T ).
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Proof Let Nullity(T ) = m. Then m ≤ n because Ker(T ) is a subspace of

V . Now, suppuse that B = {x1, x2, . . . , xm} is a basis of Ker(T ). Then B

is a linearly independent subset of V . Therefore, by Basis-Extension theorem

B can be extended to a basis of V . Let B1 = {x1, x2, . . . , xm, xm+1, xn} be a

basis of V . Cosider the set B2 = {T (xm+1), T (xm+2), . . . , T (xn)}.

Claim that B2 is a basis of Im(T ).

For this, Consider am+1T (xm+1) + am+2T (xm+2) + · · ·+ anT (xn) = 0′

T (am+1xm+1 + am+2xm+2 + . . .+ anxn) = 0′

am+1xm+1 + am+2xm+2 + . . .+ anxn ∈ Ker(T )

⇒ am+1xm+1 + am+2xm+2 + . . .+ anxn = a1x1 + a2x2 + . . .+ amxm

⇒ a1x1 + a2x2 + . . .+ amxm − am+1xm+1 − am+2xm+2 − . . .+ anxn = 0

⇒ a1 = a2 = . . . = am = am+1 = . . . = an = 0

⇒ am+1 = . . . = an = 0.

Hence B2 is linearly independent.

Now, let y ∈ Im(T ). Then there exists x ∈ V such that T (x) = y

⇒ T (a1x1 + a2x2 + . . .+ amxm + . . .+ anxn) = y

⇒ a1T (x1) + a2T (x2) + . . .+ amT (xm) + am+1T (xm+1) + . . . anT (xn) = y

⇒ 0′ + am+1T (xm+1) + . . . anT (xn) = y

⇒ y = am+1T (xm+1) + . . . anT (xn).

Therefore y ∈ L(B2) ⇒ V = L(B2). Hence B2 is a basis of Im(T ). This

shows that Rank(T ) = dim(Im(T )) = n−m = dimV − dim(Ker(T ))

⇒ dimV = Nullity(T ) +Rank(T ).

(11.4.3) Theorem : Let V, W be vector spaces over a field F and T : V → W

be a linear transformation. Then T is one-one if and only if Ker(T ) = 0.

Proof First, we suppose that T is one-one mapping.

Now, let x ∈ Ker(T ). Then T (x) = 0′
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⇒ T (x) = T (0)

⇒ x = 0. Hence Ker(T ) = {0}.

Conversely, Suppose that Ker(T ) = {0}. To show that T is one-one, cosider

T (x1) = T (x2)

⇒ T (x1)− T (x2) = 0′

⇒ T (x1 − x2) = 0′

⇒ x1 − x2 ∈ Ker(T ). But Ker(T ) = {0}

⇒ x1 − x2 = 0

⇒ x1 = x2. Hence T is one-one.

(11.4.4) Theorem (First fundamental theorem of isomorphism): Let

V, W be vector spaces over a field F and T : V → W be an onto linear trans-

formation. Then V/Ker(T ) ∼= W .

Proof Define a rule T : V/K → W by
T (x+K)=T (x),∀x∈V , where K = Ker(T ).

I T is well defined mapping: Let x1 +K = x2 +K

⇒ x1 − x2 ∈ K

⇒ T (x1 − x2) = 0′

⇒ T (x1) = T (x2)

⇒ T (x1 +K) = T (x2 +K)

⇒ T is a well-defined map.

II T is one-one:

Ker(T ) = {x+K|T (x+ k) = 0′}

= {x+K|T (x) = 0′}

= {x+K|x ∈ K}

= {K}

Ker(T ) = {K} ⇒ T is one-one.

III T is linear transformation: Let x+K, y +K ∈ V/W and α, β ∈ F .
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Then T (α(x+K) + β(y +K)) = T ((αx+ βy) +K))

= T (αx+ βy)

= αT (x) + βT (y)

= αT (x+K) + βT (y +K)

⇒ T (α(x+K) + β(y +K)) = αT (x+K) + βT (y +K).

IV T is Onto Since T is onto, so T is clearly onto.Hence V/K ∼= W .

(11.5) Examples

1. Show that T : R3 → R3 defined by T (x, y, z) = (x−y, x+2y, y) is a linear

transformation. Determine (i)T (e1), T (e2) and (ii)Ker(T ).

Solution Here T (0, 0, 0) = (0 − 0, 0 + 2.0, 0) = (0, 0, 0). Now, let

(x1, y1, z1), (x2, y2, z2) ∈ R3 and α, β ∈ F . Then

T (α(x1, y1, z1) + β(x2, y2, z2)) = T (αx1 + βx2, αy1 + βy2, αz1 + βz2)

= (αx1 + βx2 − αy1 − βy2, αx1 + βx2 + 2(αy1 + βy2), αy1 + βy2)

= (α(x1 − y1) + β(x2 − y2), α(x1 + 2y1) + β(x2 + 2y2), αy1 + βy2)

= (α(x1 − y1), α(x1 + 2y1), αy1) + (β(x2 − y2), β(x2 + 2y2), βy2)

= α ((x1 − y1), (x1 + 2y1), y1) + β ((x2 − y2), (x2 + 2y2), y2)

= αT (x1, y1, z1) + βT (x2, y2, z2)

⇒ T is a linear transformation.

Now, T (e1) = T (1, 0, 0) = (1, 1, 0) and T (0, 1, 0) = (−1, 2, 1).

Kernel of T is given by

Ker(T ) = {(x, y, z)|T (x, y, z) = (0, 0, 0)}

= {(x, y, z)|(x− y, x+ 2y, y) = (0, 0, 0)}

= {(x, y, z)|x− y = 0, x+ 2y = 0, y = 0}

= {(x, y, z)|x = y = 0}

= {(0, 0, z)|z ∈ F}

⇒ Ker(T ) = {(0, 0, z)|z ∈ F}.
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2. Let V be a finite dimensional vector space over a field F and T be linear

operator on V . Then T is one-one if and only if T is onto.

Solution Suppose that T is one-one.

Then Ker(T ) = {0} ⇒ Nullity(T ) = 0. Therefore, by Rank-Nullity theorem,

we have dimV = Nullity(T ) +Rank(T ) = 0 +Rank(T )

⇒ V ∼= Range(T )

⇒ V = Range(T )⇒ T is onto.

Conversely, suppose that T is onto. Then V ∼= Range(T ) ⇒ dimV =

dimRange(T ) = Rank(T ). Now by Rank-Nullity theorem, we have dimV =

Nullity(T ) +Rank(T )

⇒ dimV = Nullity(T ) + dimV

⇒ Nullity(T ) = 0

⇒ Ker(T ) = {0} ⇒ T is one-one.

3. For each of the following transformations T : V → W . Find a basis and

dimension of its (i)Range space (ii) Null space. Also verify the Rank-Nullity

Theorem

(a) T : R3 → R3 defined by T (x, y, z) = (x+ 2y − z, y + z, x+ y − 2z)

(b)T : R2 → R3 be defined by T (x, y) = (x− y, y − x, x)

(c)T : R2 → R2 be defined by T (x, y) = (x+ y, x− y)

Solution (a) Since {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis of R3 so

{T (1, 0, 0), T (0, 1, 0), T (0, 0, 1)} = {(1, 0, 1), (2, 1, 1), (−1, 1, −2)}

generates Range(T ). Consider α(1, 0, 1) + β(2, 1, 1) + γ(−1, 1, −2) =

(0, 0, 0)

(α + 2β − γ, β + γ, α + β − 2γ) = (0, 0, 0)

⇒ α + 2β − γ = 0

β + γ = 0
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α + β − 2γ = 0
1 2 −1

0 1 1

1 1 −2



α

β

γ

 =


0

0

0



Now

∣∣∣∣∣∣∣∣∣
1 2 −1

0 1 1

1 1 −2

∣∣∣∣∣∣∣∣∣ = 0

⇒ {(1, 0, 1), (2, 1, 1), (−1, 1, −2)} is L.D.

Let A =


1 2 −1

0 1 1

1 1 −2

 operate R3 −R1

∼


1 2 −1

0 1 1

0 −1 −1

 operate R3 +R1

∼


1 2 −1

0 1 1

0 0 0


This shows that {(1, 2, −1), (0, 1, 1)} is a basis of Range(T )

⇒ Rank(T ) = 2.

Now, let (x, y, z) ∈ Ker(T )⇒ T (x, y, z) = (0, 0, 0)

⇒ (x+ 2y − z, y + z, x+ y − 2z) = (0, 0, 0)

⇒ x+ 2y − z = 0

y + z = 0

x+ y − 2z = 0

⇒ x = 3, y = −1, z = 1

Therefore Ker(T ) is generated by {(3, −1, 1)} ⇒ {(3, −1, 1)} is a basis of

Ker(T ). Hence Nullity(T ) = 1 and dim(R3) = 1+2 = Nullity(T )+Rank(T )
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which shows that Rank-Nullity theorem is verified.

(b) (Do yourself)

(c) (Do yourself)

(11.6) Let Us Sum Up :This lesson deals with the most important theorem

of Sylvester Rank-Nullity theorem. We have defined the kernel and range

of linear transformation, then illustrated these concepts with examples. Some

important properties of linear transformation have also been observed through

kernel and range of linear transformation.

(11.7)Lesson End Exercise

1. Show that mapping T : R3 → R3 defined by

T (x, y, z) = (y + z, x+ y − 2z, x+ 2y − 2z) is a linear transformation. Find

Range(T ), Ker(T ), Rank(T ), Nullity(T ).

Ans Range(T ) = L((1, 1, 2), (0, 1, 1)), Ker(T ) = L((3, −1, 1))

2. Find a linear transformation T : R2 → R3

such that T (1, 2) = (3, −1, 5) and T (0, 1) = (2, 1, −1). Also find

Range(T ), Ker(T ), Rank(T ), Nullity.

Ans Range(T ) = L((2, 1, −1), (−1, −3, 7)), Ker(T ) = {(0, 0, 0)}

3. Find a linear transformation T : R3 → R2 whose image is generated by

{(1, 2, 3), (4, 5, 6)}.

Hint Since B = {(1, 0, 0), (0, 1, 1), (0, 0, 1)} is a usual basis of R3. So, the

range of T is generated by T (e1), T (e2), T (e3). Put T (e1) = (1, 2, 3), T (e2) =

(4, 5, 6) and T (e3) = (0, 0, 0).

Now let (x, y, z) ∈ R3. Then (x, y, z) = xe1 + ye2 + ze3

⇒ T (x, y, z) = xT (e1) + yT (e2) + zT (e3)

= x(1, 2, 3) + y(4, 5, 6)
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= (x+ 4y, 2x+ 5y, 3x+ 6y).

(11.8) University Model Questions

1. Let V and W be two vector spaces over the same field F and T : V → W

be a linear transformation with kernel K. Prove that

(i)K is a subspace of V .

(ii)T (V ) is a subspace of W .

2. Find a linear transformation T : R3 → R3 whose image is generated by

(1, 0, −1), (1, 2, 2).

3. Let T : R3 → R2 be a mapping defined as

T (x, y, z) = (x, y), ∀ (x, y, z) ∈ R3. Show that T is a linear transformation

and find Ker(T ).

(11.9) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.

(iii) Singh, S. and Zameerudin, Q., Modern Algebra, Vikas Publishing House

Pvt. ltd.
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Lesson-XII Inverse of Linear Transformation

12.0 Structure

12.1 Introduction

12.2 Objectives

12.3 Bijective linear transformation

12.3.1− 11.3.5 Definitions

12.3.6 Theorem

12.4 Invertible Operator

12.4.1 Definition

12.4.2− 12.4.5 Theorems

12.4.6 Example

12.5 Let Us Sum Up

12.6 Lesson end exercise

12.7 University Model Questions

12.8 Suggested Readings

(12.1) Introduction : In this lesson we assume linear transformations on

finite dimensional vector spaces. Analogous to the inverse of functions, we

can find inverse of bijective linear transformations. Moreover the inverse of a

linear transformation also turns out to be a bijective linear transformation.

(12.2) Objective : The students will understand the techniques of explicit

computation of the inverse of a bijective linear transformation.

(12.3) Bijective linear transformation

(12.3.1) Definition (One-One Transformation): Let T : V → W be a

linear transformation. Then T is said to be one-one if T (x) = T (y) ⇒ x =

y, ∀ x, y ∈ V .

(12.3.2) Definition (Onto Transformation): Let T : V → W be a linear
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transformation. Then T is said to be onto if W = Range(T ).

(12.3.3) Definition (Bijective Transformation): Let T : V → W be a

linear transformation. Then T is bijective if it is both one-one and onto.

(12.3.4) Definition (Non Singular Transformation): A linear transfor-

mation T : V (F )→ W (F ) is said to be non- singular if Ker(T ) = {0}.

(12.3.5) Definition (Singular Transformation): A linear transformation

T : V (F )→ W (F ) is said to be singular if Ker(T ) 6= {0}.

(12.3.6) Theorem: A linear transformation T : V → W is non singular if

and only if the images of a linearly independent set is linearly independent.

Proof Suppose that T : V → W is non singular. Let {x1, x2, . . . , xn}

be a linearly independent subset of V . We have to show that

{T (x1), T (x2), . . . , T (xn)} is linearly independent.

For this, consider α1T (x1) + α2T (x2) + . . .+ αnT (xn) = 0

⇒ T (α1x1 + α2x2 + . . .+ αnxn) = 0

⇒ α1x1 + α2x2 + . . .+ αnxn = 0

⇒ α1 = α2 = . . . = αn = 0.

Therefore {T (x1), T (x2), . . . , T (xn)} is linearly independent.

Conversely, suppose that T takes linearly independent subset to a linearly in-

dependent. Let x ∈ Ker(T ). Then T (x) = 0. To prove that T is non-singular

we have to show that x = 0. For this, suppose that x 6= 0. Then {x} is lin-

early independent which implies that {T (x)} is linearly independent. Therefore

T (x) 6= 0 which is a contradiction. ⇒ x = 0.

Hence T is non singular.

(12.4) Invertible Operator

(12.4.1) Definition : A linear operator T : V → V is said to be invertible

operator if there exists an operator S : V → V such that ST = TS = I, where
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I is an identity operator. Here S is called the inverse of T and is denoted by

T−1.

(12.4.2) Theorem: The inverse of linear operator is unique.

Proof Let T : V → V be an invertible operator. If possible, suppose that there

exist two inverse of T say S1, S2. Then S1T = I = TS1......(1)

S2T = I = TS2.......(2).

Now S1 = S1I

= S1(TS2)

= (S1T )S2

= IS2

= S2.

Therefore, the inverse of an invertible operator must be unique.

(12.4.3) Theorem: Let V be a vector space over a field F and T : V → V

be a linear operator. Then T is invertible if and only if T is bijective.

Proof First, we suppose that T is bijective. To prove that T is invertible, we

define S : V → V by S(y) = x if y = T (x).

I S is well defined function: Since T is one-one, onto. So for each y ∈ V

there exixts a unique x ∈ V such that y = T (x)⇒ there exists a unique x ∈ V

such that S(y) = x.

Therefore S is a well defined map.

II S is linear operator: Let y1, y2 ∈ V and S(y1) = x1 so that y1 = T (x1)

S(y2) = x2 so that y2 = T (x2).

Let α, β ∈ F . Then T (αx1 + βx2) = αT (x1) + βT (x2) = αy1 + βy2

⇒ αx1 + βx2 = S(αy1 + βy2)

⇒ αS(y1) + βS(y2) = S(αy1 + βy2).

Therefore, S is a linear operator.
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Now, let x ∈ V and y = T (x). Then S(y) = x.

(ST )(x) = S(T (x)) = S(y) = x

⇒ ST = I.

Similarly, TS(y) = T (S(y)) = T (x) = y

⇒ TS = I.

Hence T is invertible and T−1 = S.

Conversly, suppose that T is invertible. Then there exists a linear operator

S : V → V such that ST = TS = I. Now, let x, y ∈ V such that T (x) = T (y)

⇒ S(T (x)) = S(T (y))

⇒ (SoT )(x) = (SoT )(y)

⇒ I(x) = I(y)

⇒ x = y. Therefore, T is one-one.

Similarily, let y ∈ V Then S(y) = x⇒ T (x) = y. So there exists x ∈ V such

that T (x) = y ⇒ T is onto. Hence T is one-one and onto.

(12.4.4) Theorem: If T, S, U be linear operators on V such that ST =

TU = I. Then T is invertible and S = U = T−1.

Proof Given that T, S, U are linear operators on V such that

ST = TU = I.

To show that T is invertible, it is enough to show that T is one-one and onto.

For this, let x, y ∈ V such that T (x) = T (y)

⇒ S(T (x)) = S(T (y))

⇒ ST (x) = ST (y)

⇒ I(x) = I(y)

⇒ x = y. Thus T is one-one.

Now, let y ∈ V be any element, then there exists x ∈ V such that U(y) = x

because S is a mapping.
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⇒ T (x) = T (U(y)) = TU(y) = I(y) = y

⇒ T is onto. Hence T is invertible.

Now we show that S = U = T−1, for that we have ST = I

⇒ (ST )T−1 = IT−1

⇒ S(TT−1) = T−1

⇒ SI = T−1

⇒ S = T−1 Also we have TU = I

⇒ T−1(TU) = T−1I

⇒ (T−1T )U = T−1

⇒ IU = T−1

⇒ U = T−1. Hence the result.

(12.4.5) Theorem: Let V be a vector space over a field F and T, S be linear

operators on V . Then

(i) if S and T are invertible, then TS is also invertible and (TS)−1 = S−1T−1.

(ii) if T is invertible and 0 6= α ∈ F , then αT is invertible and (αT )−1 = 1
α
T−1

(iii) if T is invertible, then T−1 is also invertible and (T−1)−1 = T .

Proof (i) Given that S, T are invertible⇒ There exists S−1, T−1 such that

SS−1 = S−1S = I and TT−1 = T−1T = I.

To show that ST is invertible, first we show that ST is one-one: Cosider

ST (x) = ST (y)

⇒ S(T (x)) = S(T (y))

⇒ T (x) = T (y) because S is one-one

⇒ x = y because T is one-one .

Therefore ST is one-one.

Now, let y ∈ V be any element. Since S is onto, so there extists x ∈ V such

that S(x) = y. Similarly T is onto so for each x ∈ V there exists z ∈ V
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such that x = T (z). Therefore for each y ∈ V there exists z ∈ V such that

ST (z) = S(T (z)) = S(x) = y.

Hence ST is invertible. Now, (ST )(T−1S−1) = S(TT−1)S−1 = SIS−1 =

SS−1 = I

Similarly (T−1S−1)(ST ) = T−1(S−1S)T = T−1IT = T−1T = I

⇒ (ST )−1 = T−1S−1.

(ii) To show that αT is invertible: For let (αT )(x) = (αT )(y)

⇒ αT (x) = αT (y)

⇒ T (x) = T (y) because α 6= 0 in F

⇒ x = y. Therefore αT is one-one.

Let y ∈ V . Then there exists x ∈ V such that T (x) = y as T is onto. This

implies that for each y ∈ V there exists 1
α
x such that (αT )( 1

α
x) = α 1

α
T (x) =

T (x) = y ⇒ αT is onto. Hence αT is invertible.

Now (αT )( 1
α
T−1) = α( 1

α
)T (T−1) = 1I = I

⇒ (αT )−1 = 1
α
T−1.

(iii) Let y1, y2 ∈ V . Then there exists x1, x2 ∈ V such that y1 = T (x1) and

y2 = T (x2).

⇒ T−1(y1) = x1, T
−1(y2) = x2.

Now Suppose that T−1(y1) = T−1(y2)

⇒ x1 = x2

⇒ T (x1) = T (x2)

⇒ y1 = y2.

This shows that T−1 is one-one.

Now, since T is onto, so for each y ∈ V there exists x ∈ V such that T (x) = y.

⇒ for each x ∈ V there exists y ∈ V such that x = T−1(y) [because T is in-

vertible and T−1 is a function]. Therefore T−1 is also onto. Hence T−1 is
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one-one and onto ⇒ T−1 is invertible operator on V .

Also, we have T−1T = TT−1 = I

⇒ (T−1)−1 = T .

(12.4.6) Example: Let T : R3 → R3 be a linear transformation defined by

T (x, y, z) = (3x, x− y, 2x+ y + z).

Prove that T is invertible and find T−1.

Solution We know that T is invertible if and only if T is one-one and onto.

(i) T is one-one:

Ker(T ) = {(x, y, z)|T (x, y, z) = (0, 0, 0)}

= {(x, y, z)|(3x, x− y, 2x+ y + z) = (0, 0, 0)}

= {(x, y, z)|3x = 0, x− y = 0, 2x+ y + z = 0}

= {(x, y, z)|x = 0, y = 0, z = 0}

= {(0, 0, 0)}

⇒ Ker(T ) = {(0, 0, 0)}. Therefore, T is one-one.

(ii) T is onto: Let (a, b, c) ∈ R3 be any element and suppose there exists

(x, y, z) ∈ R3 such that T (x, y, z) = (a, b, c)

⇒ (3x, x− y, 2x+ y + z) = (a, b, c)

⇒ 3x = a, x− y = b, 2x+ y + z = c

⇒ x = a
3
, y = x− b, z = c− 2x− y

⇒ x = a
3
, y = a

3
− b, z = c− 2(a

3
)− (a

3
− b)

⇒ x = a
3
, y = a

3
− b, z = c− a+ b.

Therefore, there exists (a
3
, a

3
− b, −a+ b+ c) ∈ R3 such that

T (a
3
, a

3
− b, −a+ b+ c) = (a, b, c). Thus T is onto.

Hence T is one-one and onto ⇒ T is invertible.

We have T (x, y, z) = (a, b, c)

⇒ T−1(a, b, c) = (x, y, z) = (a
3
, a

3
− b, −a+ b+ c)
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⇒ T−1(x, y, z) = (x
3
, x

3
− y, −x+ y + z) is the required inverse of T .

(12.5) Let Us Sum Up: As we have seen in set theory, every bijective map

is invertible and inverse is also bijective. With the same curiuosity, we have

seen in this lesson that bijective linear transformation is invertible. Moreover,

the injective linear transformation on finite dimensional vector spaces is also

invertible and vice-a-versa. We have explicitly computed the inverse of invert-

ible linear transformation on finite dimensional vector space.

(12.6) Lesson End Exercise

1. Let T be a linear operator on R3 defined by

T (x, y, z) = (2x, 4x− y, 2x+ 3y− z). Show that T is invertible and find T−1.

2. Let T be a linear operator on R3 defined by

T (x, y, z) = (x− 2y − z, y − z, z). Show that T is invertible and find T−1.

3. Show that each of the following linear operators T is invertible and find the

formula for T−1

(i) T (x, y, z) = (x− 3y − 2z, y − 4z, x)

(ii) T (x, y, z) = (x+ z, x− z, y).

4. Let T be a linear operator on R3 defined by

T (x, y, z) = (x− 3y − 2z, x− 4z, z). Show that T is invertible and find T−1.

5. If T is a linear transformation on T (x, y) = (αx + βy, ax + by) for

(x, y) ∈ C2 and α, β, a, b ∈ C. Prove that T is invertible if and only if

bα− aβ 6= 0.

Hint T is invertible if and only if T is one-one and onto.

T is invertible if and only if Ker(T ) = {(0, 0)} i.e. Ker(T ) = {(0, 0)}

{(x, y)|T (x, y) = (0, 0)} = {(0, 0)}

{(x, y)|(αx+ βy, ax+ by) = (0, 0)} = {(0, 0)}
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{(x, y)|αx+ βy = 0, ax+ by = 0} = {(0, 0)}

⇔

∣∣∣∣∣∣α β

a b

∣∣∣∣∣∣ 6= 0⇔ bα− aβ 6= 0

(12.7) University Model Questions

1. Let S, T be linear operators on a vector space V (F ). Show that T and S

are invertible if and only if TS and ST are invertible.

2. Let V and W be vector spaces over the same field F such that dim(V ) =

dim(W ) and T : V → W is linear transformation. Then prove that T is in-

vertible if and only if T is non-singular.

(12.8) Suggested Readings :(i) N.S. Gopalakrishnan, University Algebra,

New Age International (P) Limited, Publishers.

(ii) Kenneth Hoffman, Ray Kunze, Linear Algebra,Prentice Hall India.
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Unit-IV

Lesson-XIII Open and Closed set of R

13.0 Structure

13.1 Introduction

13.2 Objectives

13.3 Open Sets

13.4 Properties Of Open Sets

13.5 Closed Sets

13.6 Let Us Sum Up

13.7 Lesson End Exercise

13.8 University Model Questions

13.9 Suggested Readings

(13.1) Introduction

In the previous lesson, we have seen that the denumerable sets are ”small”

whereas the non-denumberable sets are big. In this lesson, we will see that

some sets are ”thick” that is they contain an entire neighbourhood of each of

its points. We shall be dealing only with real numbers and sets of real numbers

unless otherwise stated.

(13.2) Objective

In this lesson, we shall study the concept of neighbourhood of a point, open

sets and closed sets on the real line , their examples and properties.

(13.3) Open Sets

(13.3.1) Definition A set N ⊆ R is called the neighbourhood of a point a, if

there exists an open interval I containing a and contained in N , i.e.,

a ∈ I ⊆ N
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Remark:

1. Every open interval is a neighbourhood of each of its points.

2. The set R is the neighbourhood of each of its points.

3. The closed interval [a,b] is the neighbourhood of each point of (a,b) but

it is not the nbd. of the end points a and b.

4. The empty set is nbd. of each of its points in the sense that there is no

point in empty set of which it is not a nbd.

5. A non-empty finite set is not a nbd. of any of its points.For, a set can be

a nbd. of a point if it contains an interval containing that point. Since

an interval necessarily contains an infinite number of points, therefore

in order that a set be a nbd. of a point it must necessarily contain an

infinty of points.

6. The set Q of rationals, the set Z of integers, the set N of natural numbers

are not the nbd of any of their points.

(13.3.2) Definition Let A ⊆ R. Then A is said to be open if it is a nbd. of

each of its points. Equivalently, A is open if for each x ∈ A, ∃ε > 0 such that

(x− ε, x+ ε) ⊂ A.

In the light of the above remark and the definition of the open set, it is clear

that:

1. Every open interval is an open set.

2. The set R is open.
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3. The closed interval [a,b] is not an open set as it is not the nbd. of the

end points a and b.

4. The empty set is an open set .

5. A non-empty finite set is not an open set.

6. The set Q of rationals, the set Z of integers, the set N of natural numbers

are not open sets.

7. The set
{

1
n

: n ∈ N
}

is not open.

(13.4) Properties of Open sets

(13.4.1) Theorem Any union of open sets is open.

Proof. Let {Aλ : λ ∈ ∆} be the family of open sets. We shall show that⋃
λ∈∆Aλis open. For this, let x ∈

⋃
λ∈∆Aλ. Then x ∈ Aλ, for some λ ∈ ∆.

Since each Aλ is open, there exists some ε > 0 such that x ∈ (x− ε, x+ ε) ⊆

Aλ. Thus, x ∈ (x− ε, x+ ε) ⊆
⋃
λ∈∆Aλ. This proves that

⋃
λ∈∆Aλis open.

Hence the proof.

(13.4.2) Theorem Finite intersection of open sets is open.

Proof. Let A and B be any two open sets. We shall show that A ∩ B is an

open set. For this, let x ∈ A ∩B. Then x ∈ A and x ∈ B. Since A and B are

open sets, there exist ε1 > 0andε2 > 0 such that x ∈ (x− ε1, x+ ε2) ⊆ A and

x ∈ (x− ε2, x+ ε2) ⊆ B. Let ε = min {ε1, ε2}. Clearly, x ∈ (x− ε, x+ ε) ⊆

A ∩B. This proves that A ∩B is open. Hence the proof.

(13.4.3) Theorem Prove that every open set is a union of open intervals.

Proof. Let A be an open set and xλ ∈ A. Since A is open, there is an open

interval Ixλ for each of its points xλ such that

xλ ∈ Ixλ ⊆ A, ∀xλ ∈ A.
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Again the set A can be thought as the union of singleton sets like {xλ}. There-

fore,

A =
⋃
{xλ} ⊆

⋃
Ixλ ⊆ A

implies,

A =
⋃

Ixλ

. Hence the proof.

(13.4.5) Definition A point x is said to be an interior point of a set S

if S is a nbd. of x. The collection of all interior points of a set is called the

interior of the set. The interior of a set S is generally denoted by So.

(13.4.6)Theorem Interior of a set is an open set.

Proof. Let S be a given set and So be its interior.

If So = φ, then So is open. Let So 6= φ and let x ∈ So. Then x is an interior

point of S, there exist an open interval Ix such that x ∈ Ix ⊆ S. But Ix being

an open interval, is a nbd. of each of its points. This implies, every point of

Ix is an interior point of Ix and Ix ⊆ S. Therefore, every point of Ix is an

interior point of S. This implies, Ix ⊆ So. That is, x ∈ Ix ⊆ So. This implies

that every point of So is an interior point of So. Hence So is an open set.

(13.4.7)Theorem The interior of a set S is the largest open subset of S.

Proof We already know that interior of a set S is an open subset of S. We

shall now show that any open subset A of S is contained in So. For this, let x

be any point of A. Since an open set is nbd. of each of its points, therefore A

is a nbd of x. But S is a superset of A, it follows that S is also a nbd. of x.

This implies, x is an interior point of S and therefore x ∈ So.

That is, x ∈ A implies x ∈ So.

Therefore, A ⊆ So.

Hence, every open subset of S is contained in So. Thus, the interior of S is
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the largest open subset of S.

Observation:

1. Any intersection of open sets need not be open. Let In =
(
− 1
n
, 1
n

)
, n ∈ N.

Then {In}n∈N is an infinite family of open sets and
⋂
In = {0} , which

being a non-empty finite set is not an open set.

2. Every open interval is an open set. But every open set need not be an

open interval, for A = (0, 1) ∪ (3, 4) is an open set being the union of

two open sets but A is not an interval.

3. Every open set is a union of open intervals. Lets S be an open set and

xλ ∈ S. Then there exist an open interval say, Ixλ for each xλ ∈ S such

that

xλ ∈ Ixλ ⊆ S,∀xλ ∈ S.

Clearly, S =
⋃
Ixλ .

(13.5) Closed Sets

(13.5.1) Definition Let A be a subset of R. Then a is said to be closed if its

compliment R \ A is an open set.

Remark:

1. Every closed interval [a,b] is a closed set as R \ [a, b] = (−∞, a)∪ (b,∞)

is an open set.

2. The set R is closed as R \ R = φ, is an open set.

3. The empty set is closed as R \ φ = R, is an open set.
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4. The sets (a,b] and [a,b) are neither open nor closed sets.

(13.5.2) Theorem Arbitrary intersection of closed sets is closed.

Proof. Let {Aλ : λ ∈ ∆} be the family of closed sets. We shall show that⋂
λ∈∆Aλis closed. For this, we shall show that R \

⋂
λ∈∆Aλ is an open set.

Cleraly,

R \
⋂
λ∈∆

Aλ =
⋃

(R \ Aλ)

Since each Aλ is a closed set, it follows that R \ Aλ is open for all λ. Also,

arbitrary union of open sets is open, so
⋃

(R \ Aλ) is open. Thus, R\
⋂
λ∈∆Aλ

is an open set. Hence the proof.

(13.5.3) Theorem Finite union of closed sets is closed.

Proof.: Let A and B be any two closed sets. To show that A ∪ B is closed ,

we shall show that R \ (A ∪B) = R \ A ∩ R \ B is open. Now, A and B are

closed implies R \A and R \B are open. Since finite intersection of open sets

is open, we have R \ A ∩ R \B is open. Hence the proof.

Observation:

1. Any union of closed sets need not be closed. Let An =
[

1
n
, 1
]
, n ∈ N.

Then {An}n∈N is an infinite family of closed sets and
⋃
An = (0, 1] ,

which is not a closed set.

2. The set of real numbers is a closed set as its complement is empty set,

which is open.

3. The set of integers is not a closed set.

4. The set of rational numbers is not a closed set.
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(13.6) Let us sum up: In this lesson, we have defined open sets and closed

sets on real line. Open intervals are the open sets on real line. We also stud-

ied that arbitrary union of open sets is open. The set of real numbers and the

empty set are both open and closed.Also, there are sets which are neither open

nor closed.

(13.7) Lesson End Exercise

a. Give an example of each of the following:

1 a set which is a nbd. of each of its points.

Sol. The open interval (1, 2) .

2 a set which is not nbd. of any of its points.

Sol. The finite set {1, 2, 3, 4, 5} .

3 a set which is a nbd. of each of its points with the exception of one

point.

Sol. The set (1, 4] is nbd. of each of points except 4.

4 a set which is a nbd. of each of its points with the exception of two

points.

Sol. The closed interval [5, 7] is nbd. of each of its points except

the end points 5 and 7.

5 a set which is a nbd. of each of its points with the exception of n

points, n ≥ 1.

Sol. The set S =(0, 1)
⋃
{1, 2, 3, 4, 5..., n} , is a nbd. of each of its

points except n points 1,2,3,4,5,....,n.
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b. Give an example of each of the following:

1 an open set which is not an interval.

Sol. The set A=(1, 2)
⋃

(3, 4) . is an open set being the finite union

of two open sets. But A is not an interval.

2 an interval which is not an open set.

Sol. [2, 3] is an interval but not an open set.

3 a set which is neither an interval nor an open set.

Sol. The finite set {1, 2, 3} is neither an interval nor an open set.

c. Which of the following are closed,open, neither open nor closed set?

1 {x : 0 ≤ x ≤ 1}

2 [0, 1] ∪ [2, 3]

3 {x : 1 < x < 7}

4 {x : 4 ≤ x < 6}

5 The set of integers Z

6 The set of rationals Q

Sol c.

1 {x : 0 ≤ x ≤ 1} = [0, 1], being a closed interval is a closed set.
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2 [0, 1] ∪ [2, 3], is a closed set being the finite union of closed sets

[0, 1] and [2, 3].

3 {x : 1 < x < 7} = (1, 7) , being an open interval is an open set.

4 {x : 4 ≤ x < 6} = [4, 6) , is neither open nor closed.

5 The set of integers Z is not closed as it is not the nbd. of any of its

points. The set of integers has no limit points and therefore Z is a

closed set.

6 The set of rational numbers Q is not the nbd. of any of its points.

Also, it doesnot contain all of its limit points, therefore the set of

rational numbers is neither open nor closed.

d. Prove that R− N and R− N are open sets.

Sol. Let x ∈ R− N = Nc, then x /∈ N, that is x is not a natural number.

If n is the natural number nearest to x, then there exists ε = |x−n|
2

> 0 s.t

(x− ε, x+ ε) does not contain any natural number, i.e., (x− ε, x+ ε) ∩

N = φ

Therefore, (x− ε, x+ ε) ⊂ Nc

⇒ Nc is a nbd of x.

⇒ Nc is open.

Hence, R− N is open.

Again, let x ∈ R− Z = Zc, then x /∈ Z, that is x is not an integer.

If n is the integer nearest to x, then there exists ε = |x−n|
2

> 0 s.t
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(x− ε, x+ ε) does not contain any point of Z, i.e., (x− ε, x+ ε)∩Z = φ

Therefore, (x− ε, x+ ε) ⊂ Zc

⇒ Zc is a nbd of x.

⇒ Zc is open.

Hence, R− Z is open.

(13.8) University Model Questions

1. Define open sets. Give two examples. Show that the arbitrary union of

open sets is open.

2. Show that every finite set is closed.

3. Show that every non-empty open set is a union of open intervals.

4. Give an example to show that

i a subset of a closed set need not be closed.

ii a set containing a closed set need not be closed.

5. Let A be a closed set and B be an open set. Show that B-A is an open

set.

(13.9) Suggested Readings

1 T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd.,

2002
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2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international

Publishers, 2010.

3. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wi-

ley and Sons (Asia) P. Ltd.,2000.
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Lesson-XIV Denumerable and Non-Denumerable Sets

14.0 Structure

14.1 Introduction

14.2 Objectives

14.3 Denumerable Sets

14.4 Examples and Properties Of Denumerable Sets

14.5 Non-Denumerable Sets

14.6 Let Us Sum Up

14.7 Lesson End Exercise

14.8 University Model Questions

14.9 Suggested Readings

(14.1) Introduction: With the notion of bijection, it is easy to formalize the

idea that two finite sets have same number of elements. We just need to verify

that their elements can be placed in pairwise correspondence. It is natural to

generalize this to infinite sets and indeed to any arbitrary sets.

(14.2) Objective

One is led to consider some unusual subsets of the real line and it is natural

to wonder if one can give a precise intuitive meaning to the feeling that some

infinite sets have more elements than other infinite sets.(for example, real line

seems to have more elements than the natural numbers in it.)

(14.3) Denumerable Sets

The notion of equivalence of sets is supposed to lead us to a notion of relative

sizes of sets. Equivalent sets should by rights have same number of elements.

(14.3.1) Definition. Two sets X and Y are said to be equivalent, symbol-

ized by X ∼ Y , if there exists a one to one correspondence f : X −→ Y .

Remark:
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1. Equivalence is an equivalence relation on class of sets.

2. Any two open(closed) intervals are equivalent.

3. Any open interval is equivalent to the set of real numbers.

4. If X,Y,Z and W are sets with X ∩ Z = φ = Y ∩W and X ∼ Y and

Z ∼ W , then (X ∪ Z) ∼ (Y ∪W ) .

5. If X,Y,Z and W are sets such that X ∼ Y and Z ∼ W, then (X × Z) ∼

(Y ×W ) .

(14.3.2) Definition A set X is said to be finite if it is either empty or X ∼ Nk

, where Nk = {1, 2, 3, 4, 5, ..., k} .

(14.3.3) Definition A set X is said to be denumerable provided that X ∼ N.

Remarks:

1. A denumerable set can be thought of as the smallest infinte set.

2. Let X be a denumerable set. then there is a bijection f : N −→ X. If we

denote

f (1) = x1, f (2) = x2, ....f (k) = xk, ......, then the elements of X be put

in a sequence {x1, x2, ..., xk, ....} .
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3. Every infinite subset of a denumerable set is denumerable.

4. If X is a denumerable set and Y is a finite set then X∪Y is denumerable.

(14.4) Examples and Properties of Denumerable Sets

(14.4.1) Theorem.The set of all even natural numbers Ne = {2n : n ∈ N}

is denumerable.

ProofTo show that the set of even natural numbers is denumerable, consider

the mapping f : N −→ Ne defined as,

f (n) = 2n

f is one− one

Let n,m ∈ N be such that

f (n) = f (m)

implies,

2n = 2m

implies,

n = m

f is onto

Clearly, for each y=2n ∈ Ne there is n∈ N such that f (n)=2n=y.

Therefore, f is a bijection. Hence, the set of even natural numbers is

denumerable.
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(14.4.2) Theorem The set of integers,Z is denumerable.

Proof. Consider the function, f : N −→ Z, defined as

fn =

 n
2

; if n is even,

− n−1
2

; if n is odd.

We shall show that f is a bijective map.

f is one− one

Let n,m ∈ N be such that f (n) = f (m) . Then,

Case1: When both n and m are even natural numbers. Now,

f (n) = f (m)

implies,
n

2
=
m

2

implies,

n = m.

Case2:When both n and m are odd natural numbers. Now,

f (n) = f (m)

implies,

−n− 1

2
= −m− 1

2

implies,

n− 1 = m− 1.

implies,

n = m.

f is onto

Let y∈ Z. Case1: y is a positive integer.
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Subcase1:y is a positive even integer.

Let y=2n, for some natural number n. Then there is some x=4n , n∈ N such

that f (x) = 4n
2

= 2n = y.

Subcase2:y is a positive odd integer.

Let y=2n-1, for some natural number n. Then there is some x=4n-2 , n∈ N

such that f (x) = 4n−2
2

= 2n− 1 = y.

Case2: y is a negative integer.

Subcase1:y is a negative even integer.

Let y=-2n, for some natural number n. Then there is some x=4n+1 , n∈ N

such that f (x) = − (4n+1)−1
2

= −2n = y.

Subcase2:y is a negative odd integer.

Let y=-(2n− 1), for some natural number n. Then there is some x=4n-1 ,

n∈ N such that f (x) = − (4n−1)−1
2

= − (2n− 1) = y.

Clearly, pre image of 0∈ Z is 1. Therefore, f is onto.

Hence, f is a bijective map. This proves that Z is denumerable.

(14.4.3) Theorem The union of two denumerable sets is denumerable.

Proof. Let A and B be any two denumerable sets. We shall show that A∪B

is denumerable.

Case 1: A ∩B = φ

Since A ∼ N and N ∼ No, we have A ∼ No. Similarly, we have B ∼ Ne.

Consequently, we have (A ∪B) ∼ (No ∪ Ne) = N, which shows that A ∪ B is

denumerable.

Case 2: A ∩B 6= φ

Let C = B \ A. Then A ∪ C = A ∪ B and A ∩ C = φ. Also, C ⊆ B is either

finite or denumerable. If C is finite, then A ∪C is denumerable as union of a

finite set with a denumerable set is denumerable. If C is denumerable, then by
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case 1 A ∪ C is denumerable. Hence, the set A ∪B is denumerable.

Remark:

1. Finite union of denumerable sets is denumerable.

2. The set Z is denumerable as Z = N ∪ {0} ∪ −N.

(14.4.4) Theorem The set N× N is denumerable.

Proof : Consider the function f : N × N −→ N given by f (j, k) = 2j3k, for

all (j, k) ∈ N× N. this function is injective, so that N× N ∼ f (N× N) ⊂ N.

Since N×N is infinite, so is f (N× N). Since infinite subset of a denumerable

set is denumerable, it follows that f (N× N) is denumerable and so is N× N.

Hence the proof.

(14.4.4) Theorem. The set of rational numbers Q is denumerable.

Proof: We can represent each rational number uniquely as p
q
, where p ∈ Z

and q ∈ N and the greatest common divisor of p and q is 1. Let Q+ be

the set of all such p
q
> 0 and let Q− be the set of all such p

q
< 0. Then

Q = Q+ ∪ {0}Q−. Clearly, Q+ ∼ Q−. hence, to show that Q is denumer-

able, it is sufficient to show that Q+ is denumerable. For this, we consider

a function f : Q+ −→ N × N given by f
(
p
q

)
= (p, q) . Since f is injective ,

we have Q+ ∼ f (Q+) ⊆ N × N. Also, Q+, is infinite so f (Q+) is an infinite

subset of the denumerable set N × N. Therefore, f (Q+) is denumerable and

consequentlyQ+ is denumerable. Hence the proof.

(14.5) Non-Denumerable Sets

(14.5.1) Definition A set X is said to be non-denumerable if it is not denu-

merable.

(14.5.2) Theorem. The open unit interval (0, 1) of real numbers is a non-
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denumerable set.

Proof : Each x∈ (0, 1) , can be expressed in the form .x1x2x3..., where each

xi ∈ {0, 1, 2, 3, 4..., 9} for all n ∈ N. For example, 1
3

= .333333....In order to

have a unique infinite decimal expression , for those numbers with a terminat-

ing decimal expansion such 1
4

= .25, we append 9’s so that 1
4

= .2499999... and

not as 1
4

= .250000...

Now suppose that the set (0, 1) is denumerable. Then there exists a bijection

f : N −→ (0, 1). So, we may list all elements of (0, 1) as follows:

f (1) = .a11a12a13...

f (2) = .a21a22a23...

f (3) = .a31a32a33...

.

.

.

f (k) = .ak1ak2ak3...

.

.

.

, where each ai,j ∈ {0, 1, 2, 3, 4, ..., 9}. Let z = z1z2z3... be defined by

zk = 5if akk 6= 5 and zk = 1 ifakk = 5, for each k ∈ N. Clearly, z ∈ (0, 1)

but z 6= f (k) , for any k ∈ N, which is a contradiction. Thus, (0, 1) is non-

denumberable.
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Observation:

1. Since (0, 1) ⊂ R, it follows that the set of real numbers is non-

denumerable.

2. The set of irrational numbers is non denumerable. For, if R \ Q is

denumerable, then the union (R \Q) ∪ Q = R is denumerable, which is

a contradiction.

(14.6)Let us sum up: In this lesson, we defined denumerable and non-

denumerable sets. Denumerable sets are considered as ”‘small”’ infinite sets,

while non- denumerable sets are considered as ”‘big”’ infinite sets. From this

point of view, the set of natural numbers, the set of integers and the the set of

rational numbers are all small relative to the set of real numbers.

(14.7) Lesson End Exercise

1. Prove that the set of all sequences whose elements are either zero or one

is not countable.

2. Prove that the set A=2m : m is an integer. is countable.

Hint Define a mapping f : Z −→ A as f (m) = 2m. Use the fact that

the set of integers is equivalent to the set of naturals and equivalence of

sets is a transitive relation.

3. Show that the set of prime numbers is denumerable.

Sol As the set of natural numbers is denumerable sets and the set of

prime numbers is a subset of natural numberss.Also the set of prime

numbers is an infinite subset of the denumerable set N, and we have that
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an infinite subset of a denumerable set is denumerable, it follows that the

set of prime numbers is denumerable.

4. Show that if A and B are denumerable sets then A× B is also a denu-

merable set.

Hint Since A and B are denumerable sets, there exists bijections f :

N −→ A and g : N −→ B. Define a map h : N −→ A × B as

h (n) = (f (n) , g (n)) . Clearly, h is a bijection.

5. Show that the set of all odd natural numbers,No is denumerable.

(14.8) University Model Questions

1. Define Denumerable sets. Give two examples. Show that the set of ra-

tional numbers is denumerable.

2. Show that the finite union of denumerable sets is denumerable and hence

show that the set of irrational numbers is non-denumerable.

3. Show that the set of complex numbers is non-denumerable.

4. Show that the interval [0, 1] is non-denumerable and hence show that the

set of real numbers is non-denumerable.

5. Find a bijection between the set of integers and the set of rational num-

bers.

(14.9) Suggested Readings
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1 T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd.,

2002

2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international

Publishers, 2010.

3. You-Feng Lin, Shwu Yeng T. Lin, Set Theory With Applications-

Mariner Publishing Company (1981).
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Lesson-XV Limit points of a set

15.0 Structure

15.1 Introduction

15.2 Objective

15.3 Limit Points of a Set

15.4 Important Results

15.5 Let Us Sum Up

15.6 Lesson End Exercise

15.7 University Model Questions

15.8 Suggested Readings

(15.1) Introduction:In this lesson, we are going to study the notion of limit

points of a set and some important results based on the concept of limit points

of a set in R. The notion of limit point is an extension of the notion of being

”close” to a set in the sense that it tries to measure how crowded the set is. To

be a limit point of a set, a point must be surrounded by infinitely many points

of the set.

(15.2) Objective

The main objective of this lesson is to make students familiar with the notion

of limit points of a set which is fundamental for laying the foundation of real

analysis.

(15.3) Limit Points of a Set

(15.3.1) Definition. A real number l is said to be the limit point of a set

S ⊂ R, if every neighbourhood N of l contains a point of S other than l. That

is,

(N ∩ S) \ {l} 6= φ.

Equivalently, a real number l is said to be the limit point of a set S ⊂ R, if
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every neighbourhood N of l contains infinitely many points of S. Limit point

of a set is also called as the accumulation point or the cluster point or the

condensation point.

Observation:

1. The set of integers has no limit point, for a nbd.
(
m− 1

2
,m+ 1

2

)
of

m ∈ Z, contains no point of Z other than m.

2. Every point of R is a limit point, for every nbd. of any of its points

contains infinite members of R.

3. Every point of the set Q of rationals is a limit point for between any

two rationals there are infinite rational numbers. Also every irrational

number is also a limit point of Q for between any two irrationals there

are infinite rational numbers. Thus, every real number is a limit point

of the set of rationals.

4. The set
{

1
n

: n ∈ N
}

has only one limit point, zero, which does not belong

to the set.

5. Every point of the open interval {a, b} is its limit point. The end points

a, b which are not in the set are also its limit points.

6. A finite set has no limit point.

7. The derived set of the set
{

1
m

+ 1
n

: m,n ∈ N
}

is {0} ∪
{

1
n

: n ∈ N
}

8. The set
{

1 + 1
n
, n ∈ N

}
has only one limit point 1.

9. 1 and -1 are the limit points of the set
{

1,−1, 11
2
,−11

2
, 11

3
, ...
}
.
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(15.3.2) Definition The set of all limit points of a set S is called the derived

set of S and is denoted by S
′
. Thus,

S
′
= {x : x is a limit point of S} .

(15.4) Important Results

(15.4.1) Theorem Prove that a real number l is a limit point of a set S iff

each nbd. of l contains infinitely many points of S.

Proof. Let l be the limit point of S. Then by definition, every nbd. N of l

contains a point of S other than l. That is,

N ∩ S \ {l} 6= φ.

Suppose N contains only finitely many points of S. Let

N ∩ S \ l = {l1, l2, ....ln}

and ε = min. {|l − l1| , |l − l2| , ...... |l − ln|} > 0.

Then (l − ε, l + ε) is a nbd. of l which contains no point of S. That is,

(l − ε, l + ε) ∩ S \ {l} = φ,

a contradiction. Thus,N contains infinitely many points of S. this proves the

direct part.

Conversely, let l ∈ R be such that each nbd. N of l contains infinitely many

points of S.

This implies, every nbd. N of l contains a point of S other than l.

That is,

(l − ε, l + ε) ∩ S \ {l} 6= φ.

Thus, l is the limit point of S.

Hence the proof.
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(15.4.2) Theorem Prove that a finite set has no limit point.

Proof . Let A={x1, x2, ......, xn} be a finite subset of R. If possible, assume

that A has a limit point say x.

Now, if we choose ε = min. {|x− x1| , |x− x2| , ......., |x− xn|}, then

(x− ε, x+ ε) is a nbd. of x which contains no point of A, a contradiction.

Hence our supposition was wrong. Since x is arbitrary, it follows that A has

no limit point.

(15.4.3) Theorem. Prove that 0 is the limit point of set

S =

{
1

n
: n ∈ N

}
.

Proof. For each ε > 0, (−ε, ε) is a nbd. of 0. By Archimedean property of

reals, for each ε > 0,∃n ∈ N such that n > 1
ε

⇒ 1
n
< ε

⇒ − ε < 0 < 1
n
< ε

⇒ 1
n
∈ (−ε, ε)

Thus every nbd. of 0 contains a point of S, namely 1
n
.

⇒ 0 is the limit point of S.

Uniqueness.

S =
{

1
n

: n ∈ N
}
⊂ (0, 1].

We shall show that there is no real number other than 0 which is a limit point

of S. Let x be a non- zero real number. Then the following cases arise:

Case(i)

If x < 0, then (−∞, 0) is a nbd. of x which contains no pint of S.

i.e., (−∞, 0) ∩ S = φ.

Therefore, x is not a limit point of S.
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Case(ii)

If x > 1, then (1,∞) is a nbd. of x which does not contain any point of S.

i.e., (1,∞) ∩ S = φ.

Therefore, x is not a limit point of S.

Case(iii)

If x = 1, then
(

1
2
,∞
)

is a nbd. of x which doesnot contain any point of S.(
1

2
,∞
)
∩ S − {1} = φ.

Therefore, x is not a limit point of S.

Case(iv)

If 0 < x < 1, then 1
x
> 0

Therefore, there exists a unique natural number n such that

n ≤ 1
x
< n+ 1

⇒ 1
n
≥ x > 1

n+1

⇒ 1
n+1

< x ≤ 1
n

1
n−1

⇒ the nbd.
(

1
n+1

, 1
n−1

)
of x contains only one point 1

n
of S, i.e., only finite

number of points of S.

Hence 0 is the only limit point of S.

(15.4.4) Theorem. Prove that for any set A, A
′

is a closed set.

Proof . To prove that A
′

is a closed set, we shall show that
(
A

′)c
is an open

set. for this, let x ∈
(
A

′)c
.

⇒ x /∈ A′

⇒ x is not a limit point of A.

⇒ ∃ a nbd. I = (x− ε, x+ ε) of x such that

I ∩ A− {x} = φ.

Let y ∈ I, then I being an open interval is an open set.
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⇒ I is a nbd. of y. Also, I ∩ A− {x} = φ.

⇒ y is not a limit point of A.

⇒ y /∈ A′ ⇒ y ∈
(
A

′)c
.

Now, y ∈ I ⇒ y ∈
(
A

′)c
.

Therefore, I = (x− ε, x+ ε) ⊂
(
A

′)c
.

⇒
(
A

′)c
is a nbd. of x.

Since x is any element of
(
A

′)c
, it follows that

(
A

′)c
is nbd. of each of its

points. This proves that
(
A

′)c
is open. Hence, A

′
is a closed set.

(15.4.5) Theorem If A,B ⊂ R, then

i A ⊂ B ⇒ A
′ ⊂ B

′

ii (A ∪B)
′
= A

′ ∪B′

iii (A ∩B)
′
⊂ A

′ ∩B′

proof.

i. If A
′
= φ, then A

′ ⊂ B
′
, since empty set is the subset of every set.

If A
′ 6= φ, let x ∈ A′

and N be any nbd. of x.

⇒ N contains infinitely many points of A.

⇒ N contains infinitely many points of B.

⇒ x is a limit point of B. That is, x∈ B′
.

Now x∈ A′
implies x∈ B′

.

Therefore, A
′ ⊂ B

′
.

ii. Since A ⊂ A ∪B and A ⊂ A ∪B

⇒ A
′ ⊂ (A ∪B)

′
and B

′ ⊂ (A ∪B)
′

⇒ A
′ ∪B′ ⊂ (A ∪B)

′
...1

162



Now we proceed to show that (A ∪B)
′
⊂ A

′ ∪B′
.

If (A ∪B)
′
= φ, then (A ∪B)

′
⊂ A

′ ∪B′
.

If (A ∪B)
′
6= φ, letx ∈ (A ∪B)

′
.

⇒ x is a limit point of A ∪B.

⇒ every nbd. of x contains infinitely many points A ∪B.

⇒ every nbd. of x contains infinitely many points of A or B.

⇒ x is a limit point of A or a limit point of B.

⇒ x∈ A′
or x∈ B′

⇒ x∈ A′ ∪B′

Since x∈ (A ∪B)
′
, implies x∈ A′ ∪B′

....2

From 1 and 2 we have

(A ∪B)
′
= A

′ ∪B′
.

iii. A ∩B ⊂ A implies (A ∩B)
′
⊂ A

′

A ∩B ⊂ B implies (A ∩B)
′
⊂ B

′

Therefore, (A ∩B)
′
⊂ A

′ ∩B′
.

Note: (A ∩B)
′

and A
′ ∩ B′

may not be equal. For example, let A= (1, 2),

B=(2, 3) . Therefore, A ∩B = φ, implies (A ∩B)
′
= φ.

Also, A
′
= [1, 2] , B

′
= [2, 3] .

A
′ ∩B′

= {2} .

Therefore, (A ∩B)
′
6= A

′ ∩B′
.

(15.4.6) Definition Let S⊂ R. Then the closure of S is defined as the set of

all those point in R which are either the points of S or the limit point(s) of S.

Closure of S is denoted by S.That is,

S = S ∪ S ′
.
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(15.4.7) Theorem Prove that for any set A, A is a closed set.

Proof To show that A is closed, it is enough to show that A
c

is open.

Let x be any element of
(
A
)c

x ∈
(
A
)c

⇒ x /∈ A

⇒ x /∈ A ∪ A′

⇒ x /∈ A and x /∈ A′

⇒ ∃ a nbd. I = (x− ε, x+ ε) of x such that I ∩ A = φ

Let y ∈ I, then I being an open interval is an open set.

⇒ I is a nbd of y. Also, I ∩ A = φ

⇒ y is not a limit point of A.

⇒ y /∈ A′
. Also,y /∈ A.

⇒ y /∈ A ∪ A′
. Also,y /∈ A.

⇒ y ∈
(
A
)c

Since y ∈ I ⇒ y ∈
(
A
)c
.

Therefore, I = (x− ε, x+ ε) ⊂
(
A
)c

.

⇒
(
A
)c

is a nbd. of x. ⇒ A
c

is an open set.

⇒ A is a closed set.

Hence the proof.

(15.4.8) Theorem Prove that A set is closed iff A = A.

That is, A is closed iff A contains all its limit points.

Proof If A = A, then A is closed because A is closed.

Conversely, let A be a closed set. We shall show that A = A. Clearly,

A ⊂ A. (1)

If A
′
= φ then A

′ ⊂ A.

If A
′
= φ then A

′ ⊂ A.
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If A
′ 6= φ then let x ∈ A′

.

Suppose x /∈ A, then X ∈ Ac. Since A is a closed set, Ac is an open set.

Therefore, Ac is the nbd. of x.

Also, x ∈ A′ ⇒ x is a limit point of A.

⇒ every nbd. of x contains infinitely many points of A.

⇒ Ac contains infinitely many points of A.

⇒ Ac ∩ A 6= φ, a contradiction.

Thus, our supposition was wrong. Therefore, x ∈ A. Since x ∈ A
′

implies

x ∈ A.

Therefore A
′ ⊂ A.

Hence, A ⊂ A (2).

From (1) and (2) we have A = A.

Hence the proof.

(15.4.9) Theorem If A and B are subsets of R, then prove that

i A ∪B = A ∪B

ii A ∩B ⊂ A ∩B

Proof (i) A ∪B = (A ∪B) ∪ (A ∪B)
′

= (A ∪B) ∪
(
A

′ ∪B′)
= A ∪

(
B ∪ A′) ∪B′

=
(
A ∪ A′) ∪ (B ∪B′)

= A ∪B

(ii) A ∩B ⊂ A

⇒ A ∩B ⊂ A
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Also, A ∩B ⊂ B

⇒ A ∩B ⊂ B

Therefore, A ∩B ⊂ A ∩B

Note: The inclusion cannot be replaced by equality. For example, if A = (0, 1)

and B = (1, 2) , then A ∩B = φ.

Therefore, A ∩B = φ.

Also,A = [0, 1] and B = [1, 2].

Now, A ∩B = {1} .

Thus, A ∩B 6= A ∩B

(15.5) Let Us Sum Up: A limit point x of a set S is a point which can be

”approximated” by the points of the set S in the sense that every neighbourhood

of x contains a point of S other than x itself. Limit point of a set is not unique.

A set may or may not have a limit point. Limit point of a set may or may not

belong to the set.

(15.6) Lesson End Exercise

1. Give an example of an infinite set with no limit point.

Sol: The set of natural numbers, N.

2. Give an example of a set with exactly one limit point.

Sol. Th set S=
{

1
n

: n ∈ N
}

has exactly one limit point 0, which dosnot

belong to the set S.

3. Give an example of a set with exactly two limit points.

Sol. Consider the set S=
{

1 + 1
n

: n ∈ N
}
∪
{

2 + 1
n

: n ∈ N
}

has two

limit points 1 and 2.
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4. Give an example of set with infinitely many limit points.

Sol. each point of the set of real numbers is a limit point of R.

5. Show that a set closed if it contains all its limit points.

Sol. Let S be a set. Assume that S is not closed. Then Sc is not open.

Then there is some x ∈ Sc such that some nbd. of x contains a point of

S. Clearly, x is a limit point of S which lies in Sc.

Thus, S is not closed implies there is a limit point of S which is not in

S. Hence a set is closed if it contains all its limit points.

(15.7) University Model Questions

1. In each situation below, give an example of a set which satisfies the given

condition.

a. A bounded set with no limit point.

b. An unbounded set with no limit point.

c. An unbounded set with exactly five limit points.

d. A set whose derived set is whole of real line.

2. Define derived set. Show that the derived set of a set is a closed set.

3. Show that if x has a nbd. which contains only finitely many members of

a set S, then x cannot be a limit point of S.

4. Is it true that if A and B are subsets of R then (A ∩B)
′

= A
′ ∩ B′

?

Justify.

5. Prove that a finite set has no limit points.
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(15.8) Suggested Readings

1 T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd.,

2002

2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international

Publishers, 2010.

3. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wi-

ley and Sons (Asia) P. Ltd., 2000.
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Lesson-XVI

Heine Borel theorem for closed and bounded intervals

16.0 Structure

16.1 Introduction

16.2 Objective

16.3 Definitions

16.4 Heine Borel Theorem

16.5 Let Us Sum Up

16.6 Lesson End Exercise

16.7 University Model Questions

16.8 Suggested Readings

(16.1) Introduction:The notion of compact sets is of prime importance in

real analysis. The concept of compactnes is the abstraction of an important

property known as ’Heine- Borel Property’ posed by subsets of R which are

closed and bounded. Heine Borel theorem states that if I ⊂ R is a closed

interval, then any family of open interval in R whose union contains I has a

finite subfamily which covers I. Compactness is concerned with covering sets

with open sets.

(16.2) Objectives: This lesson aims at studying open cover, compact sets,

Heine-Borel Property, Heine-Borel Theorem and some exercises based on these

concepts.

(16.3) Open Covering

(16.3.1) Definition Let A be a non-empty subset of R. A family {Aλ}λ∈Λ of

subsets of R is said to be a cover of A if

S ⊂
⋃
λ∈Λ

Aλ.

If each member of {Aλ}λ∈∆ is an open set, then the cover is called an open
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cover.

(16.3.2) Definition Let A be a non-empty subset of R. and {Aλ}λ∈Λ be an

open cover of A. If there exists a subset Λ
′ ⊂ Λ such that the sub family

{Aλ}λ∈Λ′ , also covers A, then the sub family {Aλ}λ∈Λ′ is called subcover of

the open cover {Aλ}λ∈Λ. Observation:

1. Let An = (−n, n) , where n ∈ N. Every member of the family {An}n∈N is

an open interval interval and therefore an open set. The family {An}n∈N
is an open cover of R. Also, the cover is infinite.

2. Let A
′
n = (−2n, 2n) , where n ∈ N. Every member of the family{

A
′
n

}
n∈N is an open interval and therefore an open set. The family{

A
′
n

}
n∈N is an open cover of R. Also,

{
A

′
n

}
n∈N is a sub-cover of

{An}n∈N.

(16.3.3) Definition A subset A of R is said to be compact if it is closed and

bounded.

(16.3.4) Definition A subset A of R is said to have the Heine -Borel property

if every open cover of a has a finite sub-cover.

(16.4) Heine-Borel Theorem

(16.4.1) Theorem If a set A satisfies Heine- Borel property, then any closed

subset of A satisfies Heine- Borel property.

Proof . Let A satisfies Heine- Borel property, and B be any closed subset of A.

We shall show that B also satisfies Heine- Borel property. Suppose {Bλ}λ∈∆

is an open cover of B.

Therefore, B ⊂
⋃
λ∈∆ Bλ

⇒ Bc ∪B ⊂ Bc ∪
(⋃

λ∈∆ Bλ

)
, where Bc is open since B is closed.
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⇒ R ⊂ Bc ∪
(⋃

λ∈∆ Bλ

)
as Bc ∪B = R

Now A⊂ R, implies

A ⊂ Bc ∪
(⋃

λ∈∆ Bλ

)
⇒ the family F consisting of Bc and {Bλ}λ∈∆ is an open cover of A.

But A has Heine- Borel property, implies F has a finite subcover say, G con-

sisting of Bc and Bλ1 , Bλ2 , Bλ3 , ....., Bλn. Since B ⊂ A, it implies that

B ⊂ Bc ∪Bλ1 ∪Bλ2 ∪Bλ3 ∪ ..... ∪Bλn

Again, B ∩Bc = φ, it follows that

B ⊂ Bλ1 ∪Bλ2 ∪Bλ3 ∪ ..... ∪Bλn

⇒ {Bλ1 , Bλ2 , Bλ3 , ....., Bλn} is an open cover of B.

Thus, the open

cover {Bλ}λ∈∆ of B has a finite sub cover {Bλ1 , Bλ2 , Bλ3 , ....., Bλn} . Hence,

B also satisfies Heine- Borel property. This completes the proof.

(16.4.2) Theorem HEINE-BOREL THEOREM A set A is compact if

and only if A has the Heine- Borel property.

Proof . Assume that A be a compact set. Then A is bounded and closed. Let

a = g.l.b A and b= l.u.b A. Therefore, A ⊂ [a, b].

If a=b, then A = {a} and ever open cover of A contains nbd. of a. This nbd.

is then the finite sub cover. Thus, A has the Heine- Borel Property.

Now, let a 6= b and [a, b] = I. We shall prove that I satisfies the Heine Borel

Property. Suppose I does not have the Heine Borel Property. Then there exists

a family F of open sets which covers I, but no finite sub family of which covers

I. Divide I into two equal closed intervals I
′

and I”, where I
′

=
[
a, a+b

2

]
and

I” =
[
a+b

2

]
. Then at least one of these I

′
and I” cannot be covered by finitely

many members of F. Let I1 be that one of I
′

and I” which is not covered by

finitely many members of F. Length of I1 = l (I1) = 1
2

(b− a). Again divide I1
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into two equal closed intervals I1
,and I1

,,. Then atleast one of these cannot be

covered by finitely many members of F. Let I2 be that one of I1
,and I1

,, which

is not covered by fnitely many members of F. Length of I2 = l (I2) = 1
22

(b− a).

Continuing this way, we get a sequence {In} of closed intervals such that

i No In can be covered by finitely many members of F.

ii I = I0 ⊃ I1 ⊃ I1 ⊃ I2 ⊃ ...

That is, In+1 ⊂ In,∀n.

iii Length of In = l (In) = 1
2n

(b− a)→ 0 as n→∞.

Therefore, by Nested Interval Property of Sequences,
⋂I
n is a singleton. Let⋂I

n = {x} , then x ∈ I. Since the family F is an open cover of I, there is an

open set B ∈F such that x∈ B

=⇒ B is nbd. of x

=⇒ ε > 0 such that (x− ε, x+ ε) ⊂ B.

Now, Length of In = l (In) → 0 as n → ∞. Therefore, there is a natural

number m such that l (Im) < ε and Im ⊂ (x− ε, x+ ε) ⊂ B Thus, Im is

covered by a single member B of F, which is a contradiction (since no In can

be covered by finitely many members of F). Therefore, our supposition was

wrong. This implies, I has Hiene-Borel Property. Since A is a closed subset

of I, therefore A also has the Hiene-Borel property.

Conversely,let A have the Hiene Borel Property. We shall show that A is closed

and bounded. We know that{In} , where In = (−n, n) of open intervals cover

R. But A has Heine-Borel property implies, there exist finitely many natural

numbers n1, n2, n3, ..., nk such that the finite family {In1 , In2 , ...., Ink} covers

A. If M = max. n1, n2, n3, ..., nk, then A⊂ (−M,M) . Hence, A is bounded.
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Suppose A is not closed. Then there exists an infinite subset B of A which has

no limit point in A. Let x ∈ A and x/∈ B, that is, x∈ A \ B. Since x is not

a limit point of B, there exists an open interval Gx around x which doesnot

contain any point of B. Let y ∈ B, then y is not a limit point of B. There

exists an open interval Hy around y containing only one point, namely y, of

B. Clearly, Hy is infinite in number as B is infinite. Since the points belonging

to A are either in A\B or in B. Therefore, the family of open intervals Gx

and Hy forms an open cover of A. This family has no finite sub-cover, because

if we omit say, Hy, the corresponding point y is left uncovered. This is a

contradiction, because A has the Heine- Borel property, therefore every open

cover of A must have a finite sub-cover.

Therefore, our supposition is wrong. Hence, A is closed.

(16.5) Let Us Sum Up: On real line any closed and bounded set is compact.

However, this is not true for every metric space.

(16.6) Lesson End Exercise

1. Which of the following sets are compact

i. [0, 1] ∪ [3, 4]

Sol. The set [0, 1]∪[3, 4] being the finite union of closed and bounded

intervals is a closed and bounded set and therefore it is compact.

ii. N

Sol. The set of natural numbers is not compact as it is closed but

not bounded.
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iii. A=
{

13, 23, 33, ...., (132)3}
Sol. Since A is a finite subset of R, A is closed and bounded. Thus,

A is compact.

2. Show that finite union of compact sets is compact.

Sol. Let {A1, A2, ..., An} be a finite family of compact sets. Then each

Ai is a closed and bounded set, 1 ≤ i ≤ n.

Let S =
⋃n
i=1Ai.

Since the union of finite family of closed sets is closed, it follows that S

is a closed set.

Also, Ai ⊂ [ai, bi] , 1 ≤ i ≤ n.

If a = min. {a1, a2, a3, ...., an}

and b = max. {b1, b2, b3, ...., bn}

then S ⊂ [a, b]

⇒ S is bounded.

Now S is closed and bounded, implies S is compact.

Hence the proof.

3. Show that arbitrary intersection of compact sets , containing atleast one

point in common is compact.

Sol. Let {Aλ} da ∈λ∈δ be an arbitraray family of compact sets. Then

each Aλ is closed and bounded for λ ∈ δ.

Let S =
⋂
λ∈δ Aλ.

Since the intersection of an arbitrary family of closed sets is a closed set.

Therefore, S is a closed set.

Also S ⊂ Aλ, ∀λ ∈ δ and each Aλ is bounded.

Therefore, S is bounded.

Now S is closed and bounded, implies S is compact.
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Hence the proof.

4. Given the set S= {1, 1.1, 0.9, 1.01, 0.99, 1.001, 0.999, ...}

a Is the set S bounded?

b Does the set S have l.u.b and g.l.b? If so, determine them.

c Does the set S attains its bounds?

d Find the interior of S?

e Does the set S have any limit point? If so, determine them.

f Is S closed?

g Is S a compact set?

Sol.

a S= {1} ∪
{

1± 1
10n

: n ∈ N
}
⊂ [0.9, 1.1]

⇒ S is bounded.

b S is non- empty bounded subset of R

Therefore, S has the l.u.b and the g.l.b.

1.1 is an upper bound of S and 1.1 ∈ S.

⇒ l.u.b S =1.1

0.9 is a lower bound of S and 0.9 ∈ S

⇒ g.l.b S =0.9

c Yes
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d Let x ∈ S. For any ε > 0, (x− ε, x+ ε) is a nbd. of x. Since

(x− ε, x+ ε) contains infinitely many points which are not in S.

Therefore, S is not a nbd. of x.

⇒ S is not a nbd. of any of its points.

⇒ So = φ.

e Yes, S has one limit point, namely 1.

f Since the only limit point 1∈ S, implies S is closed.

g S is closed and bounded implies S is compact.

5 Which of the following are compact?

a A=
{

(x, y) ∈ R2 : x2

a2
+ y2

b2
= 1, a 6= b

}
b B=

{
(x, y) ∈ R2 : x2

a2
+ y2

b2
6= 1, a 6= b

}
c C={(x, y) ∈ R2 : ax+ by + 5 = 0}

d D={(x, y) ∈ R2 : ax = by2}

e E={(x, y) ∈ R2 : x3 + y3 = 1}

Sol:

a A is the boundary of an ellipse hence it is closed and bounded

⇒ A is compact.

b B is an interior of an ellipse hence it is closed and bounded

⇒ B is compact.
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c C is a plane in R3, hence unbounded

⇒ C is not compact.

d D is a parabola and hence not bounded

⇒ D is not compact.

e E is not bounded

⇒ E is not compact.

6 Which of the following subsets of R2 are compact?

1. {(x, y) : |x| ≤ 1, |y| ≤ 1}

2. {(x, y) : |x| ≤ 1, |y2| ≤ 1}

3. {(x, y) : x2 + 3y2 ≤ 5}

4. {(x, y) : x2 ≤ y2 + 1}

Sol.

1,2. The sets 1 and 2 are the interior of the square with boundary formed

by lines x = ±1 and y = ±1, hence are closed and bounded.

⇒ 1 and 2 are compact.

3. The set 3 is the interior of an ellipse with boundary hence closed

and bounded

⇒ 3 is compact.

4. The set 4 is the boundary of a hyperbola which is unbounded

⇒ 4 is not compact.

7. Which of the following sets are compact?

a. {(x, y) ∈ R2 |x2 + y2| ≤ 1}

b. {(x, y) ∈ R2 |x2 + y2| ≥ 1}
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c. {(x, y) ∈ R2 |x2 + y2| < 1}

d. {(x, y) ∈ R2 |x2 + y2| = 1}

Sol

a. The set a. is the interior and boundary of the unit circle in R2,

hence it is closed and bounded

⇒ a. is compact.

b. The set b. is the exterior of the unit circle in R2, hence it is un-

bounded

⇒ b. is not compact.

c. The set c. is the interior of the unit circle in R2, hence it is not

closed

⇒ c. is not compact.

d. The set d. is the unit circle in R2, hence it is closed and bounded

⇒ d. is compact.

(16.7) University Model Questions

1. State and prove Heine-Borel Theorem.

2. Show that a closed subset of a compact set is compact.

(16.8) Suggested Readings

1 T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd.,

2002

2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international

Publishers, 2010.
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3. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wi-

ley and Sons (Asia) P. Ltd.,2000.
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Lesson-XVII Bolzano-Weirstrauss Theorem

17.0 Structure

17.1 Introduction

17.2 Objective

17.3 Definitions

17.4 Bolzano-Weirstrauss Theorem

17.5 Let Us Sum Up

17.6 Lesson End Exercise

17.7 University Model Questions

17.8 Suggested Readings

(17.1) Introduction The Bolzano- Weierstrass Theorem says something in-

tutive: that a set of numbers of infinite cardinality yet whose elements are

bounded in size, is going to have a huddle around at least one point.

(17.2) Objectives In lesson XV, we have seen that a finite set has no limit

point. Also, we have seen that an infinite set may or may not have a limit

point. In this lesson, we shall study Bolzano- Weierstrass Theorem, which sets

out sufficient conditions for a set to have a limit point. The main aim of this

lesson is to introduce Bolzano- Weierstrass Theorem to the students.

(17.3) Bolzano-Weierstrass Theorem

(17.3.1) Theorem Bolzano-Weierstrass Theorem Every infinite bounded

set has a limit point.

Proof : Let S be any infinite bounded set and m, M its infimum and supremum

respectively. Let P be a set of real numbers defined as follows:

{x : x exceeds at the most a finite number of members of S} .

Clearly, P is non empty as m ∈ P. Also, M is an upper bound of P, for no

number greater than or equal to M can belong to P. Thus the set P is non-
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empty and is bounded above. Therefore, by the order completeness property, P

has the supremum say l. We shall show that l is the limit point of S. Consider

any nbd. (l − ε, l + ε) of l, where ε > 0.

Since l is the supremum of P, there exists at least one member say q of P such

that q > l − ε. Since q ∈ P, therefore it exceeds at most a finite number of

members of S and so l− ε can exceed at most a finite number of members of S.

Also, l+ε exceeds infinitely many members of S, implies (l − ε, l + ε) , contains

infinite members of S. This proves that l is a limit point of S. Hence the proof.

Note: Boundedness is not necessary in order for an infinite set S to have a

limit point. The unbounded interval (a,∞) has infinitely many limit points.

(17.3.2) Theorem Prove that a finite set has no limit point.

Proof. Let A={x1, x2, ......, xn} be a finite subset of R. If possible, assume

that A has a limit point say x.

Now, if we choose ε = min. {|x− x1| , |x− x2| , ......., |x− xn|}, then

(x− ε, x+ ε) is a nbd. of x which contains no point of A, a contradiction.

Hence our supposition was wrong. Since x is arbitrary, it follows that A has

no limit point.

(17.3.3) Theorem Prove that 0 is the limit point of set

S =

{
1

n
: n ∈ N

}
.

Proof . For each ε > 0, (−ε, ε) is a nbd. of 0. By Archimedean property of

reals, for each ε > 0,∃n ∈ N such that n > 1
ε

⇒ 1
n
< ε

⇒ − ε < 0 < 1
n
< ε

⇒ 1
n
∈ (−ε, ε)

Thus every nbd. of 0 contains a point of S, namely 1
n
.

⇒ 0 is the limit point of S.
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Uniqueness.

S =
{

1
n

: n ∈ N
}
⊂ (0, 1].

We shall show that there is no real number other than 0 which is a limit point

of S. Let x be a non- zero real number. Then the following cases arise:

Case(i)

If x < 0, then (−∞, 0) is a nbd. of x which contains no point of S.

i.e., (−∞, 0) ∩ S = φ.

Therefore, x is not a limit point of S.

Case(ii)

If x > 1, then (1,∞) is a nbd. of x which does not contain any point of S.

i.e., (1,∞) ∩ S = φ.

Therefore, x is not a limit point of S.

Case(iii)

If x = 1, then
(

1
2
,∞
)

is a nbd. of x which does not contain any point of S.(
1

2
,∞
)
∩ S − {1} = φ.

Therefore, x is not a limit point of S.

Case(iv)

If 0 < x < 1, then 1
x
> 0

Therefore, there exists a unique natural number n such that

n ≤ 1
x
< n+ 1

⇒ 1
n
≥ x > 1

n+1

⇒ 1
n+1

< x ≤ 1
n

1
n−1

⇒ the nbd.
(

1
n+1

, 1
n−1

)
of x contains only one point 1

n
of S, i.e., only finite
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number of points of S.

Hence 0 is the only limit point of S.

(17.3.4) Theorem Prove that for any set A, A
′

is a closed set.

Proof To prove that A
′

is a closed set, we shall show that
(
A

′)c
is an open

set. for this, let x ∈
(
A

′)c
.

⇒ x /∈ A′

⇒ x is not a limit point of A.

⇒ ∃ a nbd. I = (x− ε, x+ ε) of x such that

I ∩ A− {x} = φ.

Let y ∈ I, then I being an open interval is an open set.

⇒ I is a nbd. of y. Also, I ∩ A− {x} = φ.

⇒ y is not a limit point of A.

⇒ y /∈ A′ ⇒ y ∈
(
A

′)c
.

Now, y ∈ I ⇒ y ∈
(
A

′)c
.

Therefore, I = (x− ε, x+ ε) ⊂
(
A

′)c
.

⇒
(
A

′)c
is a nbd. of x.

Since x is any element of
(
A

′)c
, it follows that

(
A

′)c
is nbd. of each of its

points. This proves that
(
A

′)c
is open. Hence, A

′
is a closed set.

(17.3.5) Theorem If A,B ⊂ R, then

i A ⊂ B ⇒ A
′ ⊂ B

′

ii (A ∪B)
′
= A

′ ∪B′

iii (A ∩B)
′
⊂ A

′ ∩B′

Proof.
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i. If A
′
= φ, then A

′ ⊂ B
′
, since empty set is the subset of every set.

If A
′ 6= φ, let x ∈ A′

and N be any nbd. of x.

⇒ N contains infinitely many points of A.

⇒ N contains infinitely many points of B.

⇒ x is a limit point of B. That is, x∈ B′
.

Now x∈ A′
implies x∈ B′

.

Therefore, A
′ ⊂ B

′
.

ii. Since A ⊂ A ∪B and A ⊂ A ∪B

⇒ A
′ ⊂ (A ∪B)

′
and B

′ ⊂ (A ∪B)
′

⇒ A
′ ∪B′ ⊂ (A ∪B)

′
...1

Now we proceed to show that (A ∪B)
′
⊂ A

′ ∪B′
.

If (A ∪B)
′
= φ, then (A ∪B)

′
⊂ A

′ ∪B′
.

If (A ∪B)
′
6= φ, letx ∈ (A ∪B)

′
.

⇒ x is a limit point of A ∪B.

⇒ every nbd. of x contains infinitely many points A ∪B.

⇒ every nbd. of x contains infinitely many points of A or B.

⇒ x is a limit point of A or a limit point of B.

⇒ x∈ A′
or x∈ B′

⇒ x∈ A′ ∪B′

Since x∈ (A ∪B)
′
, implies x∈ A′ ∪B′

....2

From 1 and 2 we have

(A ∪B)
′
= A

′ ∪B′
.

iii. A ∩B ⊂ A implies (A ∩B)
′
⊂ A

′

A ∩B ⊂ B implies (A ∩B)
′
⊂ B

′

Therefore, (A ∩B)
′
⊂ A

′ ∩B′
.
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Note: (A ∩B)
′

and A
′ ∩ B′

may not be equal. For example, let A= (1, 2),

B=(2, 3) . Therefore, A ∩B = φ, implies (A ∩B)
′
= φ.

Also, A
′
= [1, 2] , B

′
= [2, 3] .

A
′ ∩B′

= {2} .

Therefore, (A ∩B)
′
6= A

′ ∩B′
.

(17.3.6) Theorem Prove that the derived set of an infinite bounded subset of

R is bounded.

Proof Let S be an infinite bounded subset of R, then there exist real numbers

h,k such that S⊂ [h, k] .

Since S is infinite and bounded S
′ 6= φ.

[By Bolzano Weierstrass Theorem]

. We shall show that no element of S
′

is less than h r greater than k.

If x < h, then for ε = h − x > 0, (x− ε, x+ ε) is a nbd. of x containing no

element of [h, k] and hence containing no element of S.

Therefore, x /∈ S ′

If x > k, then for ε = x − k > 0, (x− ε, x+ ε) is a nbd. of x containing no

element of [h, k] and hence containing no elements of S.

Therefore, x /∈ S ′

Thus, x /∈ [h, k]

⇒ x /∈ S ′

⇒ all the limit points of S lie in [h, k]

⇒ S
′ ⊂ [h, k]

⇒ S
′

is bounded.

(17.4) Let Us Sum Up Bolzano-Weierstrass Theorem gives us a sufficient

condition for an infinite set to have a limit point. Bolzano-Weierstrass The-

orem is one of the most fundamental theorem in real analysis and is closely
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related to Heine- Borel Theorem and Cantor’s Intersection Theorem, each of

which can be easily derived from either of other two.

(17.5) Lesson End Exercise

i. Give one example of each of the following:

1. An infinite set having no limit point.

2. An infinite set having one limit point.

3. A set having two limit points.

4. A set having infinite number of limit points.

5. A set every point of which is a limit point.

6. A set with only
√

3 as a limit point.

7. A set with only 0 as limit point.

8. A unbounded subset of R with limit points.

ii. Find the derived set of each of the following:

a. (1,∞)

b. (−∞,−1)

c.
{

1+(−1)n

n

}
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d.
{
r
√

2 : r ∈ Q
}

Sol.i.

1. N,Z are infinite sets having no limit point.

2. The set
{

1
n
, n ∈ N

}
has only one limit point 0.

3. The set
{

1
n
, n ∈ N

}
∪
{

1 + 1
n
, n ∈ N

}
has two limit points 0 and 1.

4. The sets Q,R, [1, 2] , (2, 3) have infinite number of limit points.

5. Every point of R, [1, 2] is a limit point.

6. The set
{√

3 + 1
n
, n ∈ N

}
has only

√
3 as a limit point.

7. The set
{

1
n

: n ∈ N
}

has only 0 as a limit point.

8. The set Q of rational numbers is a subset of R which is unbounded but each

point of R is a limit point of Q.

For any r∈ Q, we have ε > 0 such that

(r − ε, r + ε) ∩Q 6= φ

Sol. ii.

a. Let x be any real number.

If x¡1, then for 0 < ε < 1− x,

(x− ε, x+ ε) ∩ (1,∞) = φ.

⇒ any real number ¡ 1 is not a limit point of (1,∞).

If x ∈ [1,∞) , then for every ε > 0, (x− ε, x+ ε) , contains infinitely many

points of (1,∞) to the right of 1.

⇒ every element of [1,∞) is a limit point (1,∞) .

b. Do yourself. c. Let S=
{

1+(−1)n

n

}
When n is odd,

1+(−1)n

n
= 0.
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When n is even,

1+(−1)n

n
= 2

n

Therefore, S= {0} ∪
{

1
n

: n ∈ N
}
⊂ [0, 1]

Clearly, S
′
= {0} .

d. Let S=
{
r
√

2 : r ∈ Q
}

Let x be any real number, then for each ε >

0, (x− ε, x+ ε) is a nbd.of x.

Now x− ε < x+ ε

⇒ x−ε√
2
< x+ε√

2

Since between any two distinct real numbers, there are infinitely many rational

numbers, therefore there exists infinitely many rational numbers r such that

x−ε√
2
< r < x+ε√

2

⇒ x− ε < r
√

2 < x+ ε

⇒ (x− ε, x+ ε) ∩ S, contains infinitely many points of S.

⇒ x is a limit point of S.

Since x is arbitrary, therefore S
′
= R

(17.6) University Model Questions

1. State and prove Bolzano- Weierstrass Theorem.

2. Show that every infinite bounded set in R has a limit point.

3. In each situation below, give an example of a set which satisfies the given

condition.

a. A bounded set with no limit point.
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b. An unbounded set with no limit point.

c. An unbounded set with exactly five limit points.

d. A set whose derived set is whole of real line.

4. Define derived set. Show that the derived set of a set is a closed set.

5. Show that if x has a nbd. which contains only finitely many members of

a set S, then x cannot be a limit point of S.

6. Is it true that if A and B are subsets of R then (A ∩B)
′

= A
′ ∩ B′

?

Justify.

7. Prove that a finite set has no limit points.

(17.7) Suggested Readings

1 T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd.,

2002

2. S. C. Malik and S. Arora, Mathematical Analysis, New Age international

Publishers, 2010.

3. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wi-

ley and Sons (Asia) P. Ltd., 2000.
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Unit-V

Lesson-XVIII Metric Spaces

18.0 Structure

18.1 Introduction

18.2 Objectives

18.3 Metric Spaces

18.3.1− 18.3.2 Definitions

18.4 Examples

18.5 Let Us Sum Up

18.6 Lesson end exercise

18.7 University Model Questions

18.8 Suggested Readings

(18.1) Introduction: In the theory of real variables, we had learnt limit, the

notion of distance which played important role in defining continuity, conver-

gence and differentiability. In this lesson, we will introduce the generalised

notion of distance on arbitrary set called metric space and illustrate it with

examples.

(18.2) Objectives: The students will understand how can one define distance

on any arbitrary set and generalization of notion of distance between two points

of a set.

(18.3) Metric Spaces

(18.3.1) Definition: Let X be any set. Then a function

d : X ×X → R is said to be a metric if

(i) d(x, y) ≥ 0, ∀ x, y ∈ X [Non-negative Property]

(ii) d(x, y) = 0⇔ x = y

(iii) d(x, y) = d(y, x), ∀ x, y ∈ X [Symmetry]
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(iv) d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X [Trianle Inequality].

The set X with a metric d is called a metric space. It is denoted by (X, d).

(18.3.2) Definition: Let X be any set. Then a function

d : X ×X → R is said to be a pseudometric if

(i) d(x, y) ≥ 0, ∀ x, y ∈ X [Non-negative Property]

(ii) d(x, y) = d(y, x), ∀ x, y ∈ X [Symmetry]

(iii) d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X [Trianle Inequality].

Note: Every metric space is pseudo-metric but the converse need not be true.

Some Results:

(i) The absolute value function satisfies the following properties

|x| ≥ 0, |x| = 0⇔ x = 0, |x| = | − x|, |x+ y| ≤ |x|+ |y|, ∀x, y ∈ R.

(ii) If u and v are complex numbers, then

|u+ v| ≤ |u|+ |v|; |u+ v|
1 + |u+ v|

≤ |u|
1 + |u|

+
|v|

1 + |v|
.

(iii) Cauchy-Schwartz Inequality: Let x = (x1, x2, . . . , xn) and y =

(y1, y2, . . . , yn) be any two n-tupple of complex numbers. Then

n∑
i=1

|xiyi| ≤

(
n∑
i=1

|xi|2
)1/2( n∑

i=1

|yi|2
)1/2

.

(iv) Minkowski’s inequality: Let x = (x1, x2, . . . , xn) and y =

(y1, y2, . . . , yn) be any two n-tupple of complex numbers. Then(
n∑
i=1

|xi + yi|p
)1/p

≤

(
n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

, if p ≥ 1

(18.3) Examples

1. Let X = R, the set of real numbers. Show that the function d : R×R→ R

defined by d(x, y) = |x− y|, ∀x, y ∈ R is a metric on R.
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Solution. We have (i) |x− y| ≥ 0, ∀x, y ∈ R

⇒ d(x, y) ≥ 0∀, x, y ∈ R

(ii) |x− y| = 0⇔ x− y = 0⇔ x = y so that d(x, y) = 0⇔ x = y

(iii) |x− y| = |y − x| ∀x, y ∈ R⇒ d(x, y) = d(y, x)∀x, y ∈ R

(iv) |x− y| = |(x− z) + (z − y)| ≤ |x− z|+ |z − y| ∀x, y, z ∈ R

⇒ d(x, y) ≤ d(x, z) + d(z, y)∀x, y, z ∈ R.

Hence from (i)-(iv), it follows that d is a metric on R.

Note: This metric d on R is known as usual metric on R and the metric

space (R, d) is known as the usual metric space.

2. Let X be a non-empty set and define a mapping d : X ×X → R as

d(x, y) =

1 if x 6= y

0 if x = y

∀x, y ∈ X

Then show that d is metric on X.

Solution. We have (i) d(x, y) ≥ 0, by definition of d.

(ii) d(x, y) = 0⇔ x = y, by definition

(iii) If x = y, then d(x, y) = 0 = d(y, x) and if x 6= y, then d(x, y) = 1 =

d(y, x). Hence d(x, y) = d(y, x)∀x, y ∈ R

(iv) Let x, y, z be any elements in X. If x = y, then d(x, y) = 0. Also

d(x, z) ≥ 0 and d(z, y) ≥ 0

Hence d(x, y) ≤ d(x, z) + d(z, y)

If x 6= y, then either x 6= y 6= z or x 6= y = z.

then either d(x, y) = d(x, z) = d(z, y) = 1

or d(x, y) = d(x, z) = 1 and d(y, z) = 0

Hence in both situations, d(x, y) ≤ d(x, z) + d(z, y)

Thus,

d(x, y) ≤ d(x, z) + d(z, y)∀x, y, z ∈ X.
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Hence d is metric on X and (X, d) is metric space.

Note: The metric space (X, d) so defined is known as discrete metric space.

3. Let X = R2 and d : X × X → R be defined by d(x, y) =√
(x1 − y1)2 + (x2 − y2)2 where x = (x1, x2) and y = (y1, y2). Then show

that d is a metric on X.

Solution. (i) Since (x1 − y1)2 and (x2 − y2)2 are non-negative real numbers,

we have √
(x1 − y1)2 + (x2 − y2)2 ≥ 0⇒ d(x, y) ≥ 0

(ii) d(x, y) = 0⇔
√

(x1 − y1)2 + (x2 − y2)2 = 0

⇔ (x1 − y1)2 = 0 and (x2 − y2)2 = 0

⇔ x1 = y1 and x2 = y2

⇔ (x1, x2) = (y1, y2)⇔ x = y.

(iii) d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

=
√

(y1 − x1)2 + (y2 − x2)2

= d(y, x)⇒ d(x, y) = d(y, x)∀, x, y ∈ X.

(iv) d(x, y) = {(x1 − y1)2 + (x2 − y2)2}1/2

= {{(x1 − z1) + (z1 − y1)}2 + {(x2 − z2) + (z2 − y2)}2}1/2.

To show that {(x1−y1)2 +(x2−y2)2}1/2 ≤ {(x1−z1)2 +(x2−z2)2}1/2 +{(z1−

y1)2 + (z2 − y2)2}1/2.

Let α1 = x1 − z1, α2 = x2 − z2, β1 = z1 − y1, β2 = z2 − y2.

Then d(x, z) =
√
α1

2 + α2
2 and d(z, y) =

√
β1

2 + β2
2.

Now, d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

=
√

((x1 − z1) + (z1 − y1))2 + ((x2 − z2) + (z2 − y2))2

=
√

(α1 + β1)2 + (α2 + β2)2.

Now d(x, y) ≤ d(x, z) + d(z, y)

⇔
√

(α1 + β1)2 + (α2 + β2)2 ≤
√
α1

2 + α2
2 +

√
β1

2 + β2
2
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⇔ (α1 + β1)2 + (α2 + β2)2

≤ α1
2 + α2

2 + β1
2 + β2

2 + 2
√

(α1
2 + α2

2)(β1
2 + β2

2)

⇔ 2α1β1 + 2α2β2 ≤ 2
√
α1

2β1
2 + α1

2β2
2 + α2

2β1
2 + α2

2β2
2

⇔ 4(α1β1 + α2β2)2 ≤ 4(α1
2β1

2 + α1
2β2

2 + α2
2β1

2 + α2
2β2

2)

⇔ 8α1α2β1β2 ≤ 4(α1
2β2

2 + α2
2β1

2)

⇔ (α1β2 − α2β1)2 ≥ 0 which is always true.

Therefore, ⇒ d(x, y) ≤ d(x, z) + d(z, y).

Hence from (i)-(iv), it follows that d is metric on R2.

4. Let X = Rn and d : X×X → R be defined by d(x, y) = {(x1− y1)2 + (x2−

y2)2 + . . .+(xn−yn)2}1/n where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Then show that d is a metric on X.

Solution. (i) Since (x1−y1)2, (x2−y2)2, . . . , (xn−yn)2 are non-negative real

numbers, we have

{(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2}1/2 ≥ 0⇒ d(x, y) ≥ 0

(ii) d(x, y) = 0⇔ {(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2}1/2 = 0

⇔ (x1 − y1)2 = 0, (x2 − y2)2 = 0, . . . , (xn − yn)2 = 0

⇔ x1 = y1, . . . , xn = yn

⇔ (x1, x2, . . . , xn) = (y1, y2, . . . , yn)⇔ x = y.

(iii) d(x, y) = {(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2}1/2

= {(y1 − x1)2 + (y2 − x2)2 + . . .+ (yn − xn)2}1/2

= d(y, x)⇒ d(x, y) = d(y, x)∀, x, y ∈ X.

(iv) d(x, y) = {(x1 − y1)2 + . . .+ (xn − yn)2}1/2

= {{(x1 − z1) + (z1 − y1)}2 + . . .+ {(xn − zn) + (zn − yn)}2}1/2

≤ {(x1 − z1)2 + . . .+ (xn − zn)2}1/2 + {(z1 − y1)2 + . . .+ (zn − yn)2}1/2

by Minkowski’s inequality

⇒ d(x, y) ≤ d(x, z) + d(z, y).
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Hence from (i)-(iv), it follows that d is metric on Rn and (Rn, d) is a metric

space.

5. If d is a metric space on a non-empty set X then prove that the function

d1(x, y) = min{1, d(x, y)} ∀x, y ∈ X

is a metric on X.

Solution. We have (i) d(x, y) ≥ 0∀x, y ∈ X

⇒ min{1, d(x, y)} ≥ 0

⇒ d1(x, y) ≥ 0.

(ii) d1(x, y) = 0⇔ min{1, d(x, y)} = 0⇔ d(x, y) = 0⇔ x = y.

(iii) d1(x, y) = min{1, d(x, y)} = min{1, d(y, x)} = d1(y, x).

(iv) We have to prove that d1(x, y) ≤ d1(x, z) + d1(z, y)

For this, if d(x, z) = 1 and d(z, y) = 1, then the result follows obviously.

Suppose that d(x, z) < 1 and d(z, y) < 1.

Then d1(x, z) + d1(z, y) = d(x, z) + d(z, y)

≥ d(x, y) ≥ min{1, d(x, y)} = d1(x, y)

⇒ d1(x, y) ≤ d1(x, z) + d1(z, y).

Thus from (i)-(iv), it follows that d1 is metric on X and (X, d1) is a metric

space.

6. Let (X, d) be any metric space. Show that the function d1 defined by

d1(x, y) =
d(x, y)

1 + d(x, y)
, ∀x, y ∈ X

is a metric on X.

Solution. Since, (X, d) be a metric space.

Therefore (i) d(x, y) ≥ 0⇒ d(x, y)
1+d(x, y)

≥ 0⇒ d1(x, y) ≥ 0.

(ii) d1(x, y) = 0⇔ d(x, y)
1+d(x, y)

= 0⇔ d(x, y) = 0⇔ x = y.

(iii) d1(x, y) = d(x, y)
1+d(x, y)

= d(y, x)
1+d(y, x)

= d1(y, x).
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(iv) For the triangle inequality, we proceed as follows:

Using the triangle iequality of metric d, we have

d(x, y) ≤ d(x, z) + d(z, y)

1 + d(x, y) ≤ 1 + d(x, z) + d(z, y)

⇒ 1
1+d(x, y)

≥ 1
1+d(x, z)+d(z, y)

⇒ 1− 1
1+d(x, y)

≤ 1− 1
1+d(x, z)+d(z, y)

⇒ d(x, y)
1+d(x, y)

≤ d(x, z)
1+d(x, z)+d(z, y)

+ d(z, y)
1+d(x, z)+d(z, y)

d1(x, y) ≤ d1(x, z) + d1(z, y).

Therefore from (i)-(iv) it follows d1 is a metric on X.

7. Let X = R2. Then show that a mapping d : X × X → R defined by

d(x, y) = |x1 − y1|+ |x2 − y2|, where x = (x1, x2), y = (y1, y2) is a metric on

X.

Solution. We have (i) |x1 − y1| ≥ 0, |x2 − y2| ≥ 0

⇒ |x1 − y1|+ |x2 − y2| ≥ 0⇒ d(x, y) ≥ 0.

(ii) d(x, y) = 0⇒ |x1 − y1|+ |x2 − y2| = 0⇒ |x1 − y1| = 0, |x2 − y2| = 0

⇒ x1 = y1, x2 = y2

⇒ x = y.

(iii) d(x, y) = |x1 − y1|+ |x2 − y2| = |y1 − x1|+ |y2 − x2| = d(y, x).

(iv) d(x, y) = |x1 − y1|+ |x2 − y2|

= |(x1 − z1) + (z1 − y1)|+ |(x2 − z2) + (z2 − y2)|

≤ |(x1 − z1)|+ |(z1 − y1)|+ |(x2 − z2)|+ |(z2 − y2)|

≤ (|(x1 − z1)|+ |(x2 − z2)|) + (|(z2 − y2)|+ |(z1 − y1)|)

≤ d(x, z) + d(z, y)⇒ d(x, y) ≤ d(x, z) + d(z, y).

Hence from (v)-(iv) it follows that d is a metric on R2.

(18.4) Let Us Sum Up: In this lesson we have described the notion of

distance on any set called metric and illustrated with the help of different ex-
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amples. We have observed that the metric on any set is not unique.

(18.5) Lesson end excercise

1. Let X = R2. Show that the mapping d : X ×X → R defined by d(x, y) =

max{|x1 − y1|, |x2 − y2|} ∀x = (x1, x2), y = (y1, y2) is a metric on X.

2.Let X = C be the set of complex number and let d : X ×X → R be defined

by d(z1, z2) = |z1 − z2|, ∀ z1, z2 ∈ X. Prove that (X, d) is a metric space.

3. Let X = R. Then show that a function d : X × X → R defined by

d(x, y) = min{2, |x− y|} is a metric on X.

4. Let R be the set of real numbers. Show that the function d : R × R → R

defined by d(x, y) = |x2 − y2|, ∀ x, y ∈ R is pseudo-metric on R which is not

a metric on R.

Hint: Here (i) |x2 − y2| ≥ 0⇒ d(x, y) ≥ 0∀x, y ∈ R.

(ii) d(x, x) = |x2 − x2| = 0∀x ∈ R

(iii) d(x, y) = |x2 − y2| = |y2 − x2| = d(y, x)∀x, y ∈ R

(iv) d(x, y) = |x2 − y2| = |(x2 − z2) + (z2 − y2)| ≤ |x2 − z2|+ |z2 − y2|

⇒ d(x, y) ≤ d(x, z) + d(z, y)∀x, y ∈ R.

This shows that d is a pseudo-metric on R.

Now we shall show that d is not a metric on R.

For this, we have d(x, y) = 0⇒ |x2−y2| = 0⇒ x2−y2 = 0⇒ y = +x or −x.

This shows that d(x, y) = 0 does not always imply x = y.

Hence, the function d is not a metric on R.

5. Let X be the set of all continuous real- valued functions defined on [0, 1],

and let

d(x, y) =

∫ 1

0

|x(t)− y(t)| dt, ∀x, y ∈ X.

197



Show that (X, d) is a metric space.

6. Let X be the set of all continuous real- valued functions defined on [a, b],

and let

d(f, g) =

∫ b

a

|f(x)− g(x)| dt, ∀ f, g ∈ X.

Show that (X, d) is a metric space.

(18.6) University Model Questions

1. Define metric space. Illustrate this one example.

2. Let X = R2 and d : X × X → R be defined by d(x, y) =√
(x1 − y1)2 + (x2 − y2)2 where x = (x1, x2) and y = (y1, y2). Show that d

is a metric on X.

3. Let X = C[0, 1] be the space of all continuous real valued function on [0, 1].

Show that the function d : X ×X → R defined by

d(f, g) = sup{|f(x)− g(x)| : x ∈ [0, 1]}

is a metric on X.

4. Let mapping d : R× R→ R be defined as d(x, y) = |x−y|
(1+|x−y|) . Prove that d

is a metric on R.

(18.7) Suggested Readings: Shanti Narayanan, M. D. Raisinghania; El-

ements of Real Analysis, S. Chand and Company Pvt. Ltd Ramnagar New

Delhi-110055.

198



Lesson-XIX Open and Closed Sets in a metric space

19.0 Structure

19.1 Introduction

19.2 Objectives

19.3 Open and Closed Sets

19.3.1− 19.3.2 Definitions

19.4 Open sets

19.4.1 Definition

19.4.2− 19.4.4 Theorems on open sets

19.5 Closed Set

19.5.1− 19.5.3 Definitions

19.5.4− 19.5.6 Theorems on closed sets

19.6 Examples

19.7 Let Us Sum Up

19.8 Lesson end exercise

19.9 University Model Questions

19.10 Suggested Readings

(19.1) Introduction: As we are familiar with open and closed intervals in

real line, similarily we can talk of open and closed sets in any set with metric.

In this lesson, we shall defined open and closed sets in any metric space.

(19.2) Objective: The students will learn the generalisation of open and

closed intervals in the real line in the form of open and closed sets in any

metric space and their properties.

(19.3) Open and Closed Sets

(19.3.1) Definition( Open sphere (or Open ball): Let (X, d) be a metric

space and a ∈ X be any point. Then the set {x ∈ X|d(a, x) < r, r > 0} is
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called an open sphere (or open ball) with centre at a and readius r. It is denoted

by S(a, r).

(19.3.1) Definition( Closed sphere (or closed ball): Let (X, d) be a

metric space and a ∈ X be any point. Then the set {x ∈ X|d(a, x) ≤ r, r > 0}

is called a closed sphere (or closed ball) with centre at a and readius r. It is

denoted by S[a, r].

Example. For the usual metric space (R, d), the open sphere S(a, r) is the

open interval (a− r, a+ r) and the closed sphere S[a, r] is the closed interval

[a− r, a+ r] where a ∈ R and r > 0.

(19.3.2) Definition (Neighbourhood of a point). Let (X, d) be a metric

space. A set N ⊂ X is said to be a neighbourhood of a point a ∈ X if there

exists some r > 0 such that S(a, r) ⊂ N .

Example Let (R, d) be a usual metric space. Then open interval (a, b) is a

neighbourhood of each of its points.

(19.4) Open Sets

(19.4.1) Definition (Open Set): Let (X, d) be a metric space. Then a set

G ⊂ X is said to be open if it is a neighbourhood of each of its points.

Example Let (R, d) be a usual metric space. Then the open interval (a, b) is

an open set in R.

For this, let x ∈ (a, b) be any point. Choose r < |x− a| and r < |b− x|. Then

(x− r, x+ r) ⊂ (a, b)

⇒ (a, b) is a neighbourhood of x. Since x was an arbitrary element of (a, b).

Therefore (a, b) is a neighbourhood of each of its points. Thus (a, b) is an

open set.

(19.4.2) Theorem. Every open sphere is an open set but the converse need

not be true.
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Proof. Let S(a, r) be an open sphere in a metric space (X, d). Then we

have to show that S(a, r) is an open set. For this, let x ∈ S(a, r). Then

d(a, x) < r. Now, choose r′ = r − d(a, x).

Claim: S(x, r′) ⊂ S(a, r).

For this, let y ∈ S(x, r′). Then d(x, y) < r′.

Now d(a, y) ≤ d(a, x) + d(x, y)

< d(a, x) + r′

= r

⇒ d(a, y) < r. Therefore, y ∈ S(a, r). Hence S(x, r′) ⊂ S(a, r). This shows

that each point of S(a, r) is the centre of open sphere contained in it and so

S(a, r) is an open set.

For the converse, let (R, d) be a usual metric space. Then (1, 2)∪ (2, 3) is an

open set but not open sphere.

(19.4.3) Theorem. Let (X, d) be metric space. A subset of X is open if and

only if it is a union of open spheres.

Proof. Let A be an open subset of X. Then, for each x ∈ A, there exists a

real number rx > 0 such that x ∈ S(x, rx) ⊂ A. Then A ⊂ ∪{S(x, rx)|x ∈

A} ⊂ A.

Therefore

A = ∪x∈AS(x, rx).

This shows that A is union of open spheres.

Conversely, suppose that A = ∪x∈AS(x, rx) and let y ∈ A be any element.

Then y ∈ S(a, r) for some a ∈ A. Since every sphere is open set, so y is the

centre of some open sphere S(y, r′) such that S(y, r′) ⊂ S(a, r)..........(1)

Also, S(a, r) ⊂ A........(2)

Thus from (1) and (2) we have S(y, r′) ⊂ A. This shows that A is a neigh-

201



bourhood of y. Since y was an arbitrary element of A. This implies that A is

a neighbourhood of each of its points. Hence A is an open subset of X.

(19.4.4) Theorem. Let (X, d) be a metric space. Then

(i) φ is open (ii) X is open

(iii) the union of arbtrary collection of open sets is open.

(iv) the intersection of finite number of open sets is open.

Proof. (i) To prove that φ is open set we have to prove that φ is a nbd of

each of its points. Since φ has no point so the definition of open set for φ is

automatically satisfied. Hence φ is open set.

(ii) Let x ∈ X be any element. Then every open sphere S(x, r) is contained

in X. Therefore, X is a nbd of each of its points and X is open set.

(iii) Let {Gα|α ∈ ∆} be any arbitrary collection of open sets in a metric space

X and G = ∪α∈∆Gα. To show that G is open set, let x ∈ G. Then x ∈ Gλ, for

some λ ∈ ∆. Since Gλ is open, so there exists r > 0 such that S(x, r) ⊂ Gλ.

This implies that S(x, r) ⊂ Gλ for some λ ∈ ∆.

⇒ S(x, r) ⊂ ∪λ∈∆Gλ.

Hence G is open set.

(iv) the intersection of a finite number of open sets is open.

Proof. Let {Gi|i = 1, 2, . . . , n} be a finite collection of open subsets of X.

We wish to show that ∩ni=1{Gi} is an open set. For this, if ∩ni=1{Gi} = φ, then

by (i) ∩ni=1 {Gi} is open.

Now, if ∩ni=1Gi 6= φ, let x ∈ ∩ni=1Gi be any point. Then x ∈ Gi, ∀ i.

Since, each Gi is open, so there exists ri > 0 such that S(x, ri) ⊂ Gi, ∀ i =

1, 2, . . . , n...........(1).

Let r = min{ri|i = 1, 2, . . . , n}. Then by (1),

we have S(x, r) ⊂ S(x, ri), ∀ i = 1, 2, . . . , n
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⇒ S(x, r) ⊂ Gi, ∀ i = 1, 2, . . . , n

⇒ S(x, r) ⊂ ∩ni=1Gi. This shows that ∩ni=1Gi is a nbd of each of its points.

Hence ∩ni=1Gi is an open set.

(19.5) Closed sets

(19.5.1) Definition (Limit Point): Let (X, d) be a metric space and S ⊂ X.

Then a point p ∈ X is said to be a limit point of S if every nbd of p contains

atleast one point of S different from p. In other words, a point p ∈ X is said

to be a limit point of the subset S ⊂ X if for each r > 0, the open sphere

S(p, r) contains a point of S other than p i.e. S(p, r) ∩ S − {p} 6= φ.

(19.5.2) Definition (Derived Set): The set of all limit points of a set

S ⊂ X is called derived set and is denoted by S ′ or D(S).

(19.5.3) Definition (Closed Set): A subset K of a metric space (X, d) is

said to be closed if K contains all its limit points.

(19.5.4) Theorem. Let (X, d) be a metric space. Then a subset K ⊂ X is

closed if and only if Kc the complement of K is open.

Proof. Let us first suppose that K is closed set. We shall show that Kc is

open. For this, if Kc = φ, then there is nothing to prove because φ is open set.

Now, we assume that Kc 6= φ. Let x ∈ Kc be any element. Then x /∈ K and

K is closed ⇒ x is not a limit point of K

⇒ there exists r > 0 such that S(x, r) ∩K = φ

⇒ x ∈ S(x, r) ⊂ Kc

⇒ Kc is open.

Conversely, suppose that Kc is open set. Then we have to show that K is

closed. For this, let x ∈ Kc, then there exists r > 0 such that S(x, r) ⊂ Kc ⇒

S(x, r) ∩K = φ

⇒ x is not a limit point of K
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⇒ K contains all its limit points

⇒ K is closed.

(19.5.5) Theorem. Every closed sphere is a closed set in a metric space

(X, d).

Proof. Let S[a, r] be a closed sphere with centre at a and radius r. Let

G = X − S[a, r], be the complement of S[a, r]. If G = φ, then G is open set

and hence S[a, r] is closed set.

Now assume that G 6= φ. Let x ∈ G. Then d(a, x) > r, let r′ = d(a, x)− r ⇒

r′ > 0. Now, to show that G is open, we shall show that S(x, r′) ⊂ G.

For this, let y ∈ S(x, r′) be any element. Then d(x, y) < r′

⇒ d(x, y) < d(a, x)− r

⇒ r < d(a, x)− d(x, y)..........(∗)

Now we know that d(a, x) ≤ d(a, y) + d(y, x) (Trianle inequality)

⇒ d(a, x)− d(x, y) ≤ d(a, y), Using this in (∗) we get,

r < d(a, y)⇒ y ∈ G. Hence S(x, r′) ⊂ G. This shows that G is open set and

S[a, r] is a closed set.

(19.5.6) Theorem. Let (X, d) be a metric space. Then

(i) φ is closed (ii) X is closed

(iii) The intersection of arbitrary family of closed sets is closed.

(iv) The union of finite family of closed sets is closed.

Proof. (i) We have φc = X, which is open set. This implies that φ is closed

set.

(ii) Xc = φ which is open set. This implies that X is closed set.

(iii) Let {Kα|α ∈ ∆} be an arbtrary collection of closed subsets of X and

K = ∩α∈∆Kα.
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Now

Kc = (∩α∈∆Kα)c = ∪α∈∆Kα
c

which is open (because each Kα is closed set and each Kα
c is open). Then

by Theorem (19.4.4)(iii) it follows that Kc is open set ⇒ K is closed set.

Therefore, any intersection of closed sets in a metric space is closed.

(iv) Let {Ki|i = 1, 2, 3, . . . , n} be finite family of closed subsets of metric

space X and K = ∪ni=1Ki. To show that K is closed, we have to show that Kc

is open.

For this, we have Kc = ∪ni=1Ki
c

= ∩ni=1Ki
c which is open by Theorem (19.4.4)(iv) because Ki

c is

open set for each i. Hence K, the finite union of closed sets in a metric space

X is closed.

(19.6) Examples

1. Find the open sphere S(0, 1
2
) in metric space (R, d).

Solution. By definition S(0, 1
2
) = {x|x ∈ R and d(x, 0) < 1

2
}

= {x|x ∈ R and |x| < 1
2
}

= {x|x ∈ R and − 1
2
< 1

2
} = (−1

2
, 1

2
).

2. Describe open sphere for discrete metric space.

Solution. Let (X, d) be a metric space. Then

d(x, y) =

1 if x 6= y

0 if x = y

∀x, y ∈ X.

Let a ∈ X be any element and r > 0 be a real number. If r < 1, then r = 0

(because d(x, y) has only two values 0 or 1)

and d(a, x) < r ⇒ a = x. Therefore, S(a, r) = {a}.

If r > 1, then S(a, r) = {x|x ∈ X and d(a, x) < r} = X. Further, if r = 1,

then S(a, r) = {x|x ∈ X and d(a, r) < 1} = {a}.

205



3. Describe open spheres (balls) of radius r and centre a in

(i) Usual metric space (R, d)

(ii) Usual metric space (R2, d)

(iii) Usual metric space (R3), d

(iv) Discrete metric space (R, d).

Proof. (i) The required open sphere in the usual metric space (R, d) is given

by S(a, r) = {x|x ∈ R and d(a, x) < r}

= {x|x ∈ R and |x− a| < r}

= {x|x ∈ R and a− r < x < a+ r}

= (a− r, a+ r).

(ii) Here d(x, y) =
√

(x1 − x2)2 + (y1 − y2)2,

where x = (x1, y1), y = (x2, y2). Therefore

S(a, r) = {(x1, y1) ∈ R2|
√

(x1 − a1)2 + (y1 − a2)2 < r}

= {(x1, y1) ∈ R2|(x1 − a1)2 + (y1 − a2)2 < r2}, which is the required

open sphere. Hence open sphere S(a, r) is the interior of circle with centre at

a = (a1, a2) and radius r.

(iii) Here d(x, y) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2,

where x = (x1, y1, z1), y = (x2, y2, z2). Therefore S(a, r)

= {(x1, y1, z1) ∈ R3|
√

(x1 − a1)2 + (y1 − a2)2 + (z1 − a3)2 < r}

= {(x1, y1, z1) ∈ R3|(x1− a1)2 + (y1− a2)2 + (z1− a3)2 < r2}, which is

the required open sphere. Hence open sphere S(a, r) is the interior of sphere

with centre at a = (a1, a2, a3) and radius r.

(iv) Here

d(x, y) =

1 if x 6= y

0 if x = y

∀x, y ∈ R.

We have two cases:
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Case I: when r > 1, then the open sphere with centre a ∈ R and radius r is

given by

S(a, r) = {x|x ∈ R and d(a, x) < r} = R.

Case II: when 0 < r ≤ 1,

then S(a, r) = {x|x ∈ R and d(a, x) < r} = {a}.

Therefore, the only open spheres in a discrete metric space (R, d) are singelton

sets or whole space.

4. Let (R, d) be the usual metric space. Then every open interval is an open

set in (R, d) where as singleton set is not open.

Solution. Let (a, b) be an open interval, where a, b ∈ R and a < b. To show

that (a, b) is an open set, we have to show that there exists an open shpere

with centre at each point of (a, b) and radius r contained in it. For this, let

x ∈ (a, b) be any point. Choose r = min{|x − a|, |b − x|}. Then there exists

an open sphere

S(a, r) ⊂ (a, b).

Hence every open interval in usual metric space is open set.

Now, let {x} be a singelton set in usual metric space (R, d). Since every open

sphere in usual metric space is an open interval, so any open interval centred

at x is S(x, ε) = (x− ε, x+ ε), where ε > 0 however small.

But S(x, ε) = (x − ε, x + ε) 6⊂ {x}. Therefore, {x} is not open set ⇒ every

singelton in usual metric space is not open set.

5. Let (R, d) be the usual metric space. Then every closed interval is a closed

set in (R, d).

Solution. Let I = [a, b] be a closed interval in the usual metric space (R, d).

Then Ic = R− I = (−∞, a)∪ (b, ∞), which is an open set (because the union

of open sets is open).
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Hence [a, b] is a closed set.

(19.7) Let Us Sum Up: In this lesson, we have defined the concepts of

open(closed) spheres (or balls), open sets and closed sets. Then the properties

of open and closed sets have been discussed. Further, all the concepts have

been illustrated with examples.

(19.8) Lesson end Exercise

1. Show that every singelton set on the real line with usual metric is closed

set.

2. Prove that every set in a discrete metric space is an open set.

3. Prove that every set in a discrete metric space is an closed set.

(19.9) University Model Questions

1. Define open set in a metric space. Prove that every open interval in a usual

metric space (R, | |) is an open set.

2. Define closed set in a metric space. Prove that every closed interval in a

usual metric space (R, | |) is an closed set.

3. Prove that every finite set in a metric space (X, d) is closed set.

Hint: Let us first show that every singelton set {x} is closed in the metric

space (X, d). For this, let G = {x}c. If G = φ, then G is obviously open set

and {x} is closed.

If G 6= φ, then there exists y ∈ G⇒ x 6= y. Let r = d(x, y). Then there exists

an open sphere S(y, r1), where r1 < r ⇒ x /∈ S(y, r1). For this if x ∈ S(y, r1),

then d(x, y) < r1 < r, a contradiction to the fact that d(x, y) = r.
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Therefore, S(y, r1) ⊂ {x}c

⇒ {x}c is open set. Hence {x} is closed in X. Therefore, {x1, x2, . . . , xn} =

∪ni=1{xi}, which is a finite union of closed sets. Hence every finite set is closed

in (X, d).

4. Show that every closed sphere in a metric space is closed set.

(19.10) Suggested Readings: Shanti Narayanan, M. D. Raisinghania; El-

ements of Real Analysis, S. Chand and Company Pvt. Ltd Ramnagar New

Delhi-110055.
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Lesson-XX Interior, Closure and Boundary of a Set

20.0 Structure

20.1 Introduction

20.2 Objectives

20.3 Interior, boundary and closure of a set

20.3.1− 20.3.5 Definitions

20.4 Examples

20.5 Let Us Sum Up

20.6 Lesson end exercise

20.7 University Model Questions

20.8 Suggested Readings

(20.1) Introduction: In a metric space (X, d), it is interesting to study the

properties of its subsets i.e, interior , exterior, frontier and boundary points of

a set. By knowing these properties of a subset of a metric space, we can derive

openness and closedness of a set.

(20.2) Objectve: The students will learn to compute explicitly the interior,

extrerior, frontier, and boundary points of a set in a metric space.

(20.3) Interior of a set

(20.3.1) Interior point of a set (Definition): Let (X, d) be a metric space

and A ⊂ X. Then a point a ∈ A is said to be an interior point of A if there

exists r > 0 such that S(a, r) ⊂ A.

The set of all interior points of a set A is called the interior of A and is

denoted by Ao.

Note: Ao ⊂ A.

(20.3.2) Exterior point of a set (Definition): Let (X, d) be a metric space

and A ⊂ X. Then a point x ∈ X is said to be an exterior point of A if there
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exists r > 0 such that S(a, r) ⊂ Ac.

The set of all exterior points of A is called exterior of the set A and is

denoted by ext(A) or (Ac)o.

(20.3.3) Frontier point of a set (Definition): Let (X, d) be a metric space

and A ⊂ X. Then a point x ∈ X is said to be a frontier point of A if it is

neither interior point of A nor an exterior point of A. The set of all frontier

points of a set A is called frontier of A and is written as Fr(A).

Note: Fr(A) = X − Ao ∪ ext(A).

(20.3.4) Boundary point of a set (Definition): Let (X, d) be a metric

space and A ⊂ X. Then a point x ∈ X is said to be a boundary point of A

if x ∈ A and x is frontier point of A. The set of all boundary points of A is

called boundary of A. It is denoted by b(A) or bd(A).

(20.3.5) Adherent point (Definition): Let (X, d) be a metric space and

A be a subset of X. Then a point x ∈ X is said to be an adherent point of A

if each open sphere centered at x contains atleast one point of A.

The set of all adherent points of A is called closure of A. It is denoted by A.

(20.3.6) Theorem. Let (X, d) be a metric space space and A ⊂ X. Then

(i) Ao is the union of all open subsets of A.

(ii) A is open set if and only if Ao = A.

(iii) If A, B ⊂ X such that A ⊂ B, then Ao ⊂ Bo

(iv) Ao is the largest open set contained in A.

Proof. (i) Let x ∈ Ao. Then there exists rx > 0 such that S(x, rx) ⊂ A.

Since each open sphere is open set. Therefore, for each y ∈ S(x, rx) there

exists ry > 0 such that S(y, ry) ⊂ S(x, rx) ⊂ A i.e S(y, ry) ⊂ A. Therefore,

each point of S(x, rx) is an interior point of A

⇒ S(x, rx) ⊂ Ao ,∀x ∈ Ao
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⇒ ∪x∈AoS(x, rx) ⊂ Ao...........(1)

Also, let x ∈ Ao ⇒ x ∈ S(x, rx)

⇒ x ∈ ∪x∈AoS(x, rx)

⇒ Ao ⊂ ∪x∈AoS(x, rx)............(2)

From (1) and (2), we get

Ao = ∪x∈AoS(x, rx).

(ii) First, we suppose that A is open set. To show that Ao = A. For this, we

have Ao ⊂ A.

Now, since A is open set, so A = ∪x∈AS(x, rx). Let y ∈ A, then y ∈ S(x, rx),

for some x ∈ A

⇒ there exists ry such that S(y, ry) ⊂ S(x, rx) ⊂ A

⇒ S(y, ry) ⊂ A. Therefore, y is an interior point of A i.e y ∈ Ao

⇒ A ⊂ Ao. Hence A = Ao.

(iv) Let x ∈ Ao. Then x is an interior point of A

⇒ there exists rx > 0 such that S(x, rx) ⊂ A.

But A ⊂ B

Therefore S(x, rx) ⊂ B

⇒ x is an interior point of B

⇒ x ∈ Bo

⇒ Ao ⊂ Bo.

(iv) By (i), we have

Ao = ∪x∈AoS(x, rx)

which is any union of open spheres and each open sphere is open set. So, Ao

is open set.

To show that Ao is the largest open set, let B be any open set contained in A.

Then Bo = B by (ii)
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Now B ⊂ A

⇒ Bo ⊂ Ao

⇒ B ⊂ Ao. This shows that Ao is the largest open set contained in A.

(20.3.7) Theorem. Let (X, d) be a metric space and let A, B ⊂ X. Then

(i) Ao ∪Bo ⊂ (A ∪B)o(ii) (A ∩B)o = Ao ∩Bo.

Proof. (i) Since A ⊂ A ∪B and B ⊂ A ∪B

⇒ Ao ⊂ (A ∪B)o and Bo ⊂ (A ∪B)o.

Taking union, we get Ao ∪Bo ⊂ (A ∪B)o.

(ii) Since A ∩B ⊂ A and A ∩B ⊂ B

⇒ (A ∩B)o ⊂ AO and (A ∩B)o ⊂ Bo

Taking intersection, we get

(A ∩B)o ⊂ Ao ∩Bo................(1)

Since Ao ⊂ A and Bo ⊂ B.

So, Ao ∩Bo ⊂ A ∩B

⇒ (Ao ∩Bo)o ⊂ (A ∩B)o

⇒ Ao ∩Bo ⊂ (A ∩B)o...........(2).

Therefore, from (1) and (2), we get (A ∩B)o = Ao ∩Bo.

(20.3.8) Theorem. Let (X, d) be a metric space and A ⊂ X. If x is an

interior point of A, then

d(x, A) = glb{d(x, y) : ∀ y ∈ A} = 0.

But the converse is not true.

Proof. We have x ∈ Ao and Ao ⊂ A

⇒ x ∈ A.

Now d(x, A) = glb{d(x, y) : ∀ y ∈ A}. Also d(x, y) ≥ 0, ∀ y ∈ A and

d(x, x) = 0 as x ∈ A. Therefore 0 ∈ {d(x, y) : ∀ y ∈ A}

⇒ glb{d(x, y) : ∀ y ∈ A} = 0.
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Hence d(x, A) = 0.

For the converse, consider (R, d) be the usual metric space and A = (0, 1) be

its subset.

Then d(0, A) = glb{d(0, y) : ∀ y ∈ A}

⇒ d(0, A) = glb{|0− y| : ∀ y ∈ (0, 1)}

⇒ d(0, A) = glb{|y| : ∀ y ∈ A}

Now 1
n
∈ A, ∀n ∈ N and d(0, 1

n
) = |0− 1

n
| = 1

n
→ 0 as n→∞

Therefore, glb{|y| : ∀ y ∈ A} = 0 i.e d(0, A) = 0 but 0 /∈ A.

(20.3.9) Theorem. Let (X, d) be a metric space and A, B be any subset of

X, then

(i) ext(φ) = X (ii) ext(X) = φ (iii) ext(A) ⊂ Ac

(iv) If A ⊂ B, then ext(B) ⊂ ext(A)

(v) ext(A ∪B) = ext(A) ∪ ext(B).

Proof. (i) ext(φ) = (φc)O = Xo = X (because the largest open set contained

in X is X).

(ii) ext(X) = (Xc)o = φo = φ.

(iii) ext(A) = (Ac)o ⊂ Ac.

(iv) Since A ⊂ B ⇒ Bc ⊂ Ac

⇒ (Bc)o ⊂ (Ac)o

⇒ ext(B) ⊂ ext(A).

(v) ext(A ∪B) = ((A ∪B)c)o

= (Ac ∩Bc)o

= (Ac)o ∩ (Bc)o

= ext(A) ∩ ext(B).

(20.3.10) Theorem. Let (X, d) be a metric space and A ⊂ X then prove

that (i) A ⊆ A (ii) A′ ⊆ A (iii) A = A ∪ A′
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(iv) A is closed set. (v) A is closed if and only if A = A.

(vi) A is the smallest closed set containing A.

(vii) A is the intersection of all closed supersets of A.

Proof. (i) Let x ∈ A.

Then S(x, r) ∩ A 6= φ for any real number r > 0

⇒ x is adherent point of A

⇒ x ∈ A.

Therefore A ⊂ A.

(ii) Let x ∈ A′. Then x is a limit point of A

⇒ S(x, r) ∩ A− {x} 6= φ for each r > 0

⇒ S(x, r) ∩ A 6= φ for each real r > 0

⇒ x is an adherent point of A

⇒ x ∈ A. Therefore A′ ⊂ A.

(iii) From (i) and (ii) we have A ⊂ A and A ⊂ A′

⇒ A ∪ A′ ⊂ A..........(1)

Now, we claim that A ⊂ A ∪ A′.

For this, let x ∈ A. Suppose that x /∈ A ∪ A′

⇒ x /∈ A and x /∈ A′

⇒ x /∈ A and there exists a real number r > 0 such that S(x, r)∩A = φ or {x}

⇒ S(x, r) ∩ A = φ

⇒ x is not an adherent point of A which contradicts the hypothesis that x ∈ A.

Therefore, our supposition is wrong. Thus x ∈ A ∪ A′.

(iv) To prove that A is closed set, we shall prove that (A)c is open set.

For this, consider x ∈ (A)c. Then x /∈ A

⇒ x is not an adherent point of A

⇒ there exists atleast one r > 0 such that S(x, r) ∩ A = φ.
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Now, we claim that S(x, r) ∩ A = φ.

For this, let y ∈ S(x, r). Then d(x, y) < r.

Consider r′ = r − d(x, y), then r′ > 0 and S(y, r′) ⊂ S(x, r)

⇒ S(y, r′) ∩ A ⊂ S(x, r) ∩ A = φ

⇒ S(y, r′) ∩ A ⊂ φ⇒ S(y, r′) ∩ A = φ

⇒ y is not an adherent point of A

⇒ y /∈ A

⇒ S(x, r) ∩ A = φ

⇒ S(x, r) ⊂ (A)c.

Hence (A)c is open ⇒ A is closed.

(v) Suppose that A is closed set. Then we shall show that A = A. For this,

we have A ⊂ A (by definition).

Since A is closed set so A′ ⊂ A and A ⊂ A⇒ A ∪ A′ ⊂ A

⇒ A ⊂ A. Hence A = A.

Conversely, suppose that A = A. Then by (iv), it follows that A is closed set.

(vi) Since A ⊂ A

⇒ A contains A. We have proved in (iv) that A is always closed. Now, let K

be any closed set containing A. Then A ⊂ K

⇒ A ⊂ K

⇒ A ⊂ K.

This shows that A is the smallest closed set containing A.

(vii) Let F = ∩{K : K is closed set and K ⊃ A}.

Then F is closed.

Since A is closed set containing A⇒ A is in the above collection and so F ⊂ A.

Since intersection of all closed sets is closed, so F is closed set containing A.

But A is the smallest closed set containing A⇒ A ⊂ F . Thus F = A⇒ A is
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the intersection of closed sets containing A.

(20.3.11) Theorem. Let (X, d) be a metric space and let A, B be any subsets

of X. Then (i) if A ⊂ B ⇒ A ⊂ B (ii) (A ∩B) ⊂ A ∩ B (iii) (A ∪B) =

A ∪B.

Proof. (i) Let A ⊂ B. Since B ⊂ B

⇒ A ⊂ B ⊂ B

⇒ B is a closed set containing A. But A is the smallest closed set containing

A. Therefore A ⊂ B.

(ii) Since A ∩B ⊂ A and A ∩B ⊂ B

therefore, by part (i), A ∩B ⊂ A and A ∩B ⊂ B

⇒ A ∩B ⊂ A ∩B.

(iii) Since A ⊂ A ∪B and B ⊂ A ∪B

therefore, by part (i), we have A ⊂ A ∪B and B ⊂ A ∪B

⇒ A ∪B ⊂ A ∪B...............(1)

Now, A ⊂ A and B ⊂ B

⇒ A ∪B ⊂ A ∪B

⇒ A ∪B ⊂ A ∪B

⇒ A ∪B ⊂ A ∪B............(2) (because A ∪B is a closed set )

From (1) and (2), we have A ∪B = A ∪B.

(20.4) Examples

1. Let (R, d) be the usual metric space. Find the interior, exterior, frontier

and boundary points of each of the folowing subsets of R:

(a) (0, 1) (b) { 1
n

: n ∈ N} (iii) Q.

Proof.(a) Let A = (0, 1)

(i) Clearly (0, 1) is open set. Therefore Ao = A = (0, 1).

(ii) Ext(A) = (Ac)o = ((−∞, 0] ∪ [1, ∞))o
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= (−∞, 0]o ∪ [1, ∞)o

= (−∞, 0) ∪ (1, ∞).

(iii) Fr(A) = R− Ao ∪ Ext(A) = R− (0, 1) ∪ (Ac)o

= R− (0, 1) ∪ (−∞, 0) ∪ (1, ∞)

= R− R = φ.

(iv) Since bd(A) ⊂ Fr(A)

⇒ bd(A) = φ.

(b) (i) Let A = { 1
n

: n ∈ N}. Then Ao = φ because there does not exist open

interval containing any point say 1
m
∈ A, where m ∈ N such that(

1

m
− ε, 1

m
+ ε

)
⊂ A.

(ii) Ext(A) = (Ac)o =
(
R− { 1

n
: n ∈ N}

)o
= R− { 1

n
: n ∈ N}.

(iii) Fr(A) = R− Ao ∪ Ext(A)

= R− φ ∩
[(
R− { 1

n
: n ∈ N}

)o]c
= R ∩ { 1

n
: n ∈ N} ∪ {0}

= { 1
n

: n ∈ N} ∪ {0}.

(iv) bd(A) = A− Ao ∪ Ext(A)

= { 1
n

: n ∈ N} −
[
R− { 1

n
: n ∈ N} ∪ {0}

]
= { 1

n
: n ∈ N}

(c) (i) Let x ∈ Q. Then there does not exist an open sphere with centre x ∈ Q

and contained in Q. Therefore, Qo = φ.

(ii) Ext(Q) = (R−Q)o = (Ir)o = φ.

(iii) Fr(Q) = R−Qo ∪ Ext(Q) = R− φ ∪ φ = R.

(iv) bd(Q) = Q−Qo ∪ Ext(Q) = Q− φ ∪ φ = Q.

2. Find the closure of the following subset of R in usual metric space (i) sin-

gleton set (ii) finite subset of R (iii) N (iv) Z (v) Q (vi) R−Q.
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Solution. (i) Let A = {x}. Then the derived set of A is given by A′ = φ.

Therefore, A = A ∪ A′ = A ∪ φ = A. i.e, {x} = {x}.

(ii) Let A = {x1, x2, . . . , xn} be a finite set. Then A′ = φ. Now, A = A∪A′ =

A ∪ φ = A.

(iii) N = N ∪ N′ = N ∪ φ = N.

(iv) Z = Z ∪ Z′ = Z ∪ φ = Z.

(iv) Q = Q ∪Q′ = Q ∪ R = R.

(iv) R−Q = (R−Q) ∪ (R−Q)′ = (R−Q) ∪ R = R.

(20.5) Let Us Sum Up: In a metric space (X, d), we could define the notion

of interior, exterior, frontier and boundary points of a subset. In this lesson,

we have explicitly computed these for some subsets of a usual metric space

(R, d).

(20.6) Lesson end exercise

1. Find the interior of [a, b] in usual metric space (R, d).

2. Find the derived set of the following subsets of R in usual metric space:

(i) = (0, 1) (ii) (0, 1] (iii) [0, 1) (iv) [0, 1].

3. Find the derived set of the following subsets of R in usual metric space:

(i) singleton set (ii) finite subset of R

(iii) N (iv) Z (v) Q (vi) R−Q.

(20.7) University Model Questions

1. Give an example to show that

Ao ∪Bo 6= (A ∪B)o.
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Hint: Take A = Q and B = Ir, the set of irrational numbers. Then Ao =

φ, Bo = φ and (A ∪B)o = R.

2. Show that the closure of open sphere is contained in the corresponding closed

sphere. Also give an example to show that the closure of an open shpere is not

necessarily a closed shere.

3. Give an example to show that

A ∪B 6= A ∪B.

Hint: Take A = Q and B = Ir, the set of irrational numbers. Then Q = R

and Ir = R. But A ∩B = φ and A ∩B = φ and Q ∩ Ir = R.

4. Prove that (i) Ac = (Ao)c

(ii) (Ac) = (Ao)c

(iii) b(A) = A ∩ Ac

(iv) b(A) = A− Ao.

(20.8) Suggested Readings: Shanti Narayanan, M. D. Raisinghania; El-

ements of Real Analysis, S. Chand and Company Pvt. Ltd Ramnagar New

Delhi-110055.
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Lesson-XXI Continuous functions on metric spaces

21.0 Structure

21.1 Introduction

21.2 Objectives

21.3 Continuous function

21.3.1 Definition

21.3.2− 21.3.6 Theorems

21.4 Examples

21.5 Let Us Sum Up

21.6 Lesson end exercise

21.8 Suggested Readings

(21.1) Introduction: As we are familiar with the concept of continuity of a

function on real numbers. Similarily we can study the concept of continuous

functions on the metric spaces. In this lesson we will explain the properties of

continuous functions on a metric space (X, d).

(21.2) Objective: The students will learn the continuity of functions on a

metric space which is the generalisation of ral valued continuous functions on

any metric space.

(21.3) Continuous functions on metric spaces

(21.3.1) Definition: Let (X, d) and (Y, ρ) be any two metric spaces. Then

a function f : X → Y is said to be continuous at a point a ∈ X if for every

ε > 0, there exists δ > 0 such that whenever

d(x, a) < δ ⇒ ρ(f(x), ε).

In other words, for each open sphere S(f(a), ε) centered at f(a), there exists

an open sphere S(a, δ) centered at a such that

f(S(a, δ)) ⊂ S(f(a), ε).
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Note: A function f : X → Y , which is continuous at every point of X is

called continuous function.

(21.3.2) Theorem. Let (X, d) and (Y, ρ) be any two metric spaces. Then

a function f : X → Y is continuous if and only if for each open subset

G ⊂ Y, f−1(G) is open subset of X.

Proof. First, we suppose that f : X → Y is a continuous function and G is

an open subset of Y . Then we will show that f−1(G) is open subset of X. For

this, if f−1(G) = φ, then there is nothing to prove. Now, let f−1(G) 6= φ and

x ∈ f−1(G). Then f(x) ∈ G.

Since G is open set, so there exists ε > 0 such that

Sρ(f(x), ε) ⊂ G.

Also f is continuous

⇒ there exists an open sphere Sd(x, δ) centered at x such that f(Sd(x, δ)) ⊂

Sρ(f(x), ε) ⊂ G⇒ Sd(x, δ) ⊂ f−1(G).

Thus for each x ∈ f−1(G), there exists an open sphere Sd(x, δ) centered at x

such that Sd(x, δ) ⊂ f−1(G). Hence, f−1(G) is open in X.

Conversely, suppose that for each open subset G ⊂ Y, f−1(G) is open subset

of X. Claim: f is continuous. For this, let x ∈ X be any point. Then

f(x) ∈ Y ⇒ there exists an open sphere Sρ(f(x), ε) centered at f(x) in Y .

Since every open sphere is an open set. Therefore, Sρ(f(x), ε) is an open

subset of Y . Then by given condition, f−1(Sρ(f(x), ε)) is open set in X and

it contains x.

Therefore, there exists an open sphere Sd(x, δ) centere at x in X such that

Sd(x, δ) ⊂ f−1(Sρ(f(x), ε))

⇒ f(Sd(x, δ)) ⊂ Sρ(f(x), ε). This shows that f is continuous at x, but x was
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an arbitrary point of X. Thus, f is continuous at every point of X and so f

is continuous function.

(21.3.3) Theorem. Let (X, d) and (Y, ρ) be any two metric spaces. Then

a function f : X → Y is continuous if and only if for each closed subset

K ⊂ Y, f−1(K) is closed subset of X.

Proof. First, we suppose that f : X → Y is a continuous function and K is

a closed subset of Y .

Then we will show that f−1(K) is closed subset of X.

For this, we have K is a closed subset of Y ,

then Y −K is open subset of Y

⇒ f−1(Y −K) is open in X

⇒ f−1(Y )− f−1(K) is open in X

⇒ f−1(K) is closed set in X.

Conversely, suppose that f : X → Y is a function such that inverse image

of every closed subset of Y is closed subset of X. We shall show that f is

continuous.

For this, let G be an open set in Y ⇒ Y −G is closed in Y

⇒ f−1(Y −G) is closed in X by given hypothesis

⇒ f−1(Y )− f−1(G) is closed in X

⇒ X − f−1(G) is closed in X

⇒ f−1(G) is open in X.

Therefore, for each open set G ⊂ Y , we have f−1(G) is open in X. Thus f is

continuous.

(21.3.4) Theorem. Let (X, d) and (Y, ρ) be any two metric spaces. Then a

function f : X → Y is continuous if and only if

f(A) ⊂ f(A), ∀A ⊂ X).
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Proof. First, we suppose that f is continuous function and let A ⊂ X. To

show that

f(A) ⊂ f(A).

Note that f(A) is a closed subset of Y . Since f is continuous, so⇒ f−1(f(A))

is closed set in X

⇒ f−1(f(A)) = f−1(f(A))..........................(1)

Now, f(A) ⊂ f(A)

⇒ A ⊂ f−1(f(A))

⇒ A ⊂ f−1(f(A)) = f−1(f(A)) (because of (1))

⇒ f(A) ⊂ f(A).

Conversely, suppose that

f(A) ⊂ f(A), ∀A ⊂ X.

To show that f is continuous.

For this, let K be a closed subset of Y ⇒ K = K

Now, f−1(K) is a subset of X

therefore by given hypothesis f(f−1(K)) ⊂ f(f−1(K)) = K = K

i.e.f−1(K) ⊂ f−1(K) but f−1(K) ⊂ f−1(K)

⇒ f−1(K) = f−1(K)

⇒ f−1(K) is closed set in X

Therefore for all closed subset K of Y ⇒ f−1(K) is closed set in X. Hence f

is continuous function.

(21.3.5) Theorem. Let (X, d) and (Y, ρ) be any two metric spaces. Then a

function f : X → Y is continuous if and only if

f−1(B) ⊂ f−1(B), ∀B ⊂ Y.
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Proof. First, we suppose that f is continuous function and let B ⊂ Y . Then

B is closed set in Y , since f is continuous,

so f−1(B) is closed set in X

⇒ f−1(B) = f−1(B)..........(1)

Now, B ⊂ B ⇒ f−1(B) ⊂ f−1(B)

⇒ f−1(B) ⊂ f−1(B) = f−1(B) (using (1))

⇒ f−1(B) ⊂ f−1(B).

Conversely, suppose that f−1(B) ⊂ f−1(B), ∀B ⊂ Y . To show that f is

continuous.

For this, let K be a closed subset of Y . Then by hypothesis, we have f−1(K) ⊂

f−1(K)

⇒ f−1(K) ⊂ f−1(K) = f−1(K)

⇒ f−1(K) ⊂ f−1(K)

But f−1(K) ⊂ f−1(K)

Therefore, f−1(K) = f−1(K)⇒ f−1(K) is a closed subset of X. Thus for each

closed subset K of Y ⇒ f−1(K) is closed subset of X. Hence f is continuous.

(21.3.6) Theorem. Let (X, d) and (Y, ρ) be any two metric spaces. Then a

function f : X → Y is continuous if and only if

f−1(Bo) ⊂
{
f−1(B)

}o
, ∀B ⊂ Y.

Proof. First, we suppose that f is continuous function and let B ⊂ Y . Then

Bo is open subset of Y , since f is continuous function. So f−1(Bo) is an open

subset of X.

⇒ (f−1(Bo))
o

= f−1(Bo)..................(1)

Now Bo ⊂ B

⇒ f−1(Bo) ⊂ f−1(B)

⇒ (f−1(Bo))
o ⊂ (f−1(B))

o
use (1)
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⇒ f−1(Bo) ⊂ (f−1(B))
o

Conversely, suppose that

f−1(Bo) ⊂
{
f−1(B)

}o
, ∀B ⊂ Y.

To show that f is continuous, let G be an open subset of Y

⇒ Go = G.

Therefore by the hypothesis f−1(Go) ⊂ {f−1(G)}o

⇒ f−1(G) ⊂ {f−1(G)}o

But {f−1(G)}o ⊂ f−1(G)

⇒ {f−1(G)}o = f−1(G)

⇒ f−1(G) is open in X.

Therefore, for all open set G ⊂ Y ⇒ f−1(G) is open in X. Hence f is

continuous.

(21.4) Examples

1. Let (X, d) be a metric space and x0 be a fixed point of X. Show that the

real valued function fx0(x) = d(x, x0) is continuous.

Solution. Let y be any point of X and ε > 0 be any arbitrary real number.

Then |fx0(x) − fx0(y)| = |d(x, x0) − d(y, x0)| ≤ d(x, y) (because d(x, A) −

d(y, A) ≤ d(x, y))

Now choose δ > 0 such that δ ≤ ε.

whenever d(x, y) < δ ⇒ |d(x, x0)− d(y, x0)| < δ ≤ ε.

Thus

d(x, y) < δ ⇒ |fx0(x)− fx0(y)| < ε.

This shows that fx0 is continuous at an arbitrary point y, it foolows that fx0

is continuous function.

2. Let (X, d), (Y, ρ) and (Z, σ) be three metric spaces and f : X → Y and

g : Y → Z be continuous functions. Then prove that gof : X → Z is also
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continuous.

Solution. Let G be an open set in Z. Then we have

(gof)−1(G) = (f−1og−1)(G) = f−1(g−1(G))

Since g is continuous and G is open Z, so g−1(G) is open in Y . Now, since f

is continuous and g−1(G is open in Y , it follows that f−1(g−1(G)) is open in

X

⇒ (gof)−1(G) is open in X. Thus gof is continuous.

(21.5) Let Us Sum UP: In this lesson we have defined continuous function

on metric spaces and then explained the various properties of continuous func-

tions on metric spaces in the form of theorems.

(21.6) Lesson End Exercise

1. Define continuous function on metric spaces. Show that inverse image of

closed set is closed set.

2. Let (X, d) be a metric space and x0 be a fixed point of X. Show that the

real valued function fx0(x) = d(x, x0) is continuous.

3. Let (X, d) be a metric space and S be a non-empty subset of X, then prove

that the function f : X → R defined by f(x) = d(x, S)∀x ∈ X is continuous

function.

(21.7) Suggested Readings: Shanti Narayanan, M. D. Raisinghania; El-

ements of Real Analysis, S. Chand and Company Pvt. Ltd Ramnagar New

Delhi-110055.
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Lesson-XXII Convergent sequences in metric space

22.0 Structure

22.1 Introduction

22.2 Objectives

22.3 Sequences in a metric space

22.3.1− 22.3.3 Definitions

22.3.4− 22.3.9 Theorems

22.4 Cauchy Sequence

22.4.1 Definition

22.4.2 Theorem

22.5 Examples

22.5 Let Us Sum Up

22.6 Lesson end exercise

22.8 Suggested Readings

(22.1) Introduction: Analogous to the notion of sequences of real numbers

and their convergence, we shall study the sequences and their convergence in

metric spaces. Further, we can investigate the properties of convergent se-

quences in metric spaces.

(22.2) Objectives: The students will learn the generalisation of convergence

of sequences from set of real numbers to any metric space.

(22.3) Sequences in a metric space

(22.3.1) Definition (Sequence): Let (X, d) be a metric space. A function

s : N→ X is called a sequence in a metric space. It is denoted by {sn}, where

sn is called nth term of the sequence.

For example {(−1)n} is sequence whose image has only two elements 1 and

−1 whereas the sequence
{

1
n

}
has infinite number of elements in its image.
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(22.3.2) Definition (Subsequence): A sequence {tn} is called a subse-

quence of the sequence {sn} if there exists a sequence of natural numbers {nk}

such that n1 < n2 < n3 < . . . and tk = snk .

For example (i) {s2, s4, s6, . . .} is a subsequence of {sn|n ∈ N}. Here nk = 2k.

(ii) {s1, s4, s9, . . .} is a subsequence of {sn|n ∈ N}. Here nk = k2.

(22.3.3) Definition (Convergent sequence): A sequence {sn} is said to

converge to a point s ∈ X if for given ε > 0, there exists m ∈ N such that

d(sn, s) < ε , ∀n ≥ m.

In other words, the sequence {sn} is said to converge to a point s ∈ X if for

given ε > 0, there exists m ∈ N such that sn ∈ S(s, ε) , ∀n ≥ m.

Note: If {sn} converges to s, we say that s is a limit of the sequence and we

write

lim
n→∞

sn = s or sn → s as n→∞.

(22.3.4) Theorem. Limit of the sequence {sn}, if exists is unique.

Proof. Suppose that the sequence {sn} converges to two distinct points say s

and t. Let r = d(s, t). Then the open spheres S(s, r
4
) and S(t, r

4
) are disjoint.

Since

lim
n→∞

sn = s

so there exists m1 ∈ N such that sn ∈ S(s, r
4
) ,∀n ≥ m1..........(1)

Similarily,

lim
n→∞

sn = t

so there exists m2 ∈ N such that sn ∈ S(t, r
4
) , ∀n ≥ m2..........(2)

Choose m = max{m1, m2}. Then from (1) and (2) we have sn ∈

S(s, r
4
) ,∀n ≥ m and sn ∈ S(s, r

4
) ,∀n ≥ m

⇒ S(s, r
4
) ∩ S(t, r

4
) 6= φ which is a contradiction. Hence the limit {sn} is

unique.
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(22.3.5) Theorem. Let (X, d) and (Y, ρ) be two metric spaces. Then a func-

tion f : X → Y is continuous at a ∈ X if and only if for each sequence {an}

in X converging to a, the sequence {f(an)} converges to f(a).

Proof. First, we suppose that f : X → Y is continuous at a and the sequence

{an} converges to a. Let ε > 0. Since f is continuous at a, so there exists

δ > 0 such that

when d(x, a) < δ ⇒ ρ(f(x), f(a)) < ε.............(1)

Also

lim
n→∞

an = a

so there exists m ∈ N such that

d(an, a) < δ, ∀n ≥ m............(2)

Put x = an in (1), we get

d(xn, a) < δ ⇒ ρ(f(xn), f(a)) < ε..............(3)

From (2) and (3) we get ρ(f(xn), f(a)) < ε, ∀n ≥ m

⇒ {f(an)} → f(a) as n→∞.

Conversely, if possible, suppose that f is not continuous. Then we shall show

that there exists a sequence {an} converging to a but the sequence {f(an)} does

not converge to f(a).

For this, since f is not continuous, so there must exist atleast one ε > 0 such

that for each δ > 0 and for some x ∈ X,

d(x, a) < δ and ρ(f(x), f(a) ≥ ε).......(4)

Take δ = 1
n

in (4), we get, for each n ∈ N, there exists an ∈ X such that

d(an, a) <
1

n
but ρ(f(an), f(a)) ≥ ε
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⇒ {f(an)} cannot converge to f(a).

(22.3.6) Theorem. Let x and y be any two points in a metric space (X, d)

and {yn} be a sequence converging to y. Then {d(x, yn)} converges to d(x, y).

Proof. Since {yn} converges to y

therefore, for given ε > 0, there exists m ∈ N such that

d(yn, y) < ε.........(1)

Now |d(x, yn)− d(x, y)| ≤ d(yn, y) (because of Example (21.4)(1))

Using (1), we get |d(x, yn)− d(x, y)| ≤ d(yn, y) < ε, ∀n ≥ m

⇒ d(x, yn)→ d(x, y).

(22.3.7) Theorem. Let (X, d) be a metric space and {xn} and {yn} be

sequences in X such that xn → x and yn → y. Then

d(xn, yn)→ d(x, y).

Proof. Since xn → x and yn → y, so by definition there exist m1, m2 ∈ N

such that

d(xn, x) < ε/2, ∀n ≥ m1

and

d(yn, y) < ε/2, ∀n ≥ m2

Choose m = max{m1, m2}. Then d(xn, x) < ε/2, ∀n ≥ m and d(yn, y) <

ε/2, ∀n ≥ m. Now

|d(xn, yn)− d(x, y)| = |d(xn, yn)− d(xn, y) + d(xn, y)− d(x, y)|

≤ |d(xn, yn)− d(xn, y)|+ |d(xn, y)− d(x, y)|

≤ |d(yn, y)|+ |d(xn, y)| < ε/2 + ε/2 = ε

⇒ |d(xn, yn)− d(x, y)| < ε, ∀n ≥ m

⇒ d(xn, yn)→ d(x, y).
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(22.3.8) Theorem. Let (X, d) be a metric space and let A ⊂ X. If x ∈ A,

then there exists a sequence {xn} of points of A such that xn → x.

Proof. Let x ∈ A. Then x is an adherent point of A

⇒ for each r > 0, S(x, r) ∩ A 6= φ.

Therefore, for each positive integer n, the open sphere S(x, 1
n
) must contain a

point xn of A i.e.xn ∈ S(x, 1
n
)

Now, we claim that xn → x as n → ∞. For this, by Archimediean Property,

for given ε > 0, there exists n0 ∈ N such that n0ε > 1

⇒ 1
n0
< ε, therefore, for each n ≥ n0 we have 1

n
< 1

n0
< ε

⇒ S(x, 1
n
) ⊂ S(x, 1

n0
) ⊂ S(x, ε)

⇒ xn ∈ S(x, 1
n
) ⊂ S(x, 1

n0
) ⊂ S(x, ε), ∀n ≥ n0

⇒ xn ∈ S(x, 1
n
) ⊂ S(x, ε), ∀n ≥ n0

⇒ xn ∈ S(x, ε), ∀n ≥ n0

⇒ d(xn, x) < ε, ∀n ≥ n0.

Hence xn → x as n→∞.

(22.3.9) Theorem. Let (X, d) be a metric space and A ⊂ X. If x ∈ A′, then

there exists a sequence {xn} of points of A distinct from x which converges to

x.

Proof. Let x ∈ A′. Then x is a limit point of A

⇒ each open sphere S(x, r) centered at x contains atleast one point of A other

than x i.e S(x, r) ∩ A− {x} 6= φ.

Let x1 6= x such that x1 ∈ A and d(x, x1) < r

Let r1 = min{1, d(x, x1)}

therefore, the open sphere S(x, r1) contains atleast one point of A other than

x i.e S(x, r1) ∩ A− {x} 6= φ.

Let x2 6= x such that x2 ∈ A and d(x, x2) < r1
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Let r2 = min{1
2
, d(x, x2)}

Again, the open sphere S(x, r2) contains atleast one point of A other than

x i.e S(x, r2) ∩ A− {x} 6= φ.

Let x3 6= x such that x3 ∈ A and d(x, x3) < r2

Let r3 = min{1
3
, d(x, x3)} and continuing as above, we get a sequence {xn} of

distinct points different from x such that

rn = min

{
1

n
, d(x, xn)

}
and open sphere S(x, rn) contains a point xn+1 of A other than

x i.e S(x, rn−1) ∩ A− {x} 6= φ.

Thus d(x, xn) < rn−1 ≤ 1
n−1

Taking limit as n→∞, we get d(x, xn)→ 0 and so xn → x.

(22.4) Definition: A sequence {xn} in a metric space (X, d) is said to

be a Cauchy sequence if for each ε > 0 there exists a positive integer

n0(depending upon ε) such that

d(xn, xm) < ε, ∀n, m ≥ n0.

(22.4.1) Theorem. Every convergent sequence in a metric space is a Cauchy

sequence.

Proof. Let {xn} be a convergent sequence such that xn → x in a metric space

(X, d). Then for given ε > 0, there exists n0 ∈ N such that

d(xn, x) < ε/2, ∀n ≥ n0.

Let m ≥ n0, then d(xm, x) < ε/2, ∀m ≥ n0.

Now d(xn, xm) ≤ d(xn, x) + d(x, xm), ∀n, m ≥ n0

< ε/2 + ε/2 = ε

⇒ d(xn, xm) < ε, ∀n, m ≥ n0. Hence {xn} is a Cauchy sequence.
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Note: The converse of this theorem is not necessarily true. i.e a Cauchy

sequence need not be convergent sequence in a metric space.

For example, let X = (0, 1] be a usual metric space with metric d. Let {xn}

be a sequence in X such that xn = 1
n
, ∀n ∈ N. We shall show that {xn} is a

Cauchy sequence. For this, since for given ε > 0, there exists n0 ∈ N such that

n0 >
2
ε

(by Archimedean Property), then

for n, m ≥ n0 ⇒ 1
n
≤ 1

n0
< ε

2
and 1

m
≤ 1

n0
< ε

2

Now d(xn, xm) = |xn − xm| ≤ |xn|+ |xm|

= 1
n

+ 1
m

< ε
2

+ ε
2

= ε.

Thus, d(xn, xm) < ε, ∀n, m ≥ n0

Therefore {xn} is a Cauchy sequence.

But

lim
n→∞

xn = lim
n→∞

1

n
= 0 /∈ X.

Hence a Cauchy sequence need not converge to any point of the metric space.

(22.4.2) Theorem. A Cauchy sequence {xn} is convergent in a metric space

if and only if it has a convergent subsequence.

Proof. Firstly, let us suppose that {xn} is Cauchy sequence and {xnk} be a

subsequence of {xn} converging to x ∈ X. Then we shall show that {xn} is

convergent sequence. For this, since every convergent sequence is Cauchy

so {xnk} is also Cauchy sequence.

Therefore, for given ε > 0, there exists a positive integer m such that

d(xnk , xn) < ε/2, ∀ k, n ≥ m.....(1)

Also {xnk} → x

⇒ d(xnk , x) < ε/2, ∀ k ≥ p for some p ∈ N..........(2).

Let k = m+ p = r, say. Then (2) becomes
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d(xnr , x) < ε/2.........(3).

Also note that nr ≥ r ≥ q and hence (1) becomes

d(xnr , xn) < ε/2, ∀ r, n ≥ m.....(4)

Now by tiangle inequality d(x, xn) ≤ d(x, xnk) + d(xnk , xn)

< ε/2 + ε/2 = ε

⇒ d(x, xn) < ε, ∀n ≥ m.

Hence {xn} is convergent.

Conversely, suppose that {xn} is a Cauchy sequence which is also convergent

in a metric space (X, d). To show that {xn} has a convergent subsequence.

For this, since {xn} is convergent, suppose it converges to x ∈ X. Then the

constant sequence {x, x, . . .} is a subsequence which is also convergent.

(22.5) Examples

1. Let {sn} be a Cauchy sequence in a metric space (X, d) and {sni} be a

subsequence of {sn}, then show that

lim
n→∞

d(sni , sn) = 0.

Solution. Since {sn} is a Cauchy sequence, so for given ε > 0 there exists

n0 ∈ N such that

d(sm, sn) < ε, ∀m, n ≥ n0

Consider {ni} such that n0 ≤ n ≤ n1 ≤ n2 ≤ . . .. Then

d(sni , sn) < ε, ∀n, ni ≥ n0.

Hence we have

lim
n→∞

d(sni , sn) = 0.

2. Let {bn} be a Cauchy sequence in a metric space (X, d) and let {an} be a

sequence in X such that d(an, bn) < 1/n for every n ∈ N then show that {an}
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is a Cauchy sequence in X.

Solution. Since {bn} is a Cauchy sequence, so for given ε > 0 there exist

m1 ∈ N such that

d(bm, bn) < ε/3, ∀m, n ≥ m1.........(1).

Now, by Archimedian property, for ε, we can find positive integer m2 such that

1
m
< ε/3 and 1

n
< ε/3, ∀m, n ≥ m2.

Choose m0 = max{m1, m2},

then m, n ≥ m0 ⇒ d(bm, bn) < ε/3, 1
m
< ε/3, 1

n
< ε/3........(∗)

Now, by triangle inequality, for m, n ≥ m0 we have

d(am, an) ≤ d(am, bm) + d(bm, bn) + d(bn, an)

< 1
m

+ ε/3 + 1
n

< ε/3 + ε/3 + ε/3 = ε

⇒ d(am, an) < ε, ∀m, n ≥ n0. Hence {an} is a Cauchy sequence.

(22.6) Let Us Sum Up: In this lesson, we have defined the notion of se-

quence, subsequence and the convergence of a sequence in a metric space. Then

we have explained the properties of convergent sequences in a metric space via

theorems and examples.

(22.7) Lesson End Exercise

1. If {xn} is a Cauchy sequence in some metric space (X, d), and a subse-

quence {xnk} converges to a limit x ∈ X, show that {xn} converges to x.

2. Show that a subsequence of a Cauchy sequence must be a Cauchy sequence.

3. If {xn} and {yn} are sequences in a space with metric d such that {xn}

is a Cauchy sequence and d(xn, yn) → 0, show that {yn} is also a Cauchy

sequence.
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(21.7) Suggested Readings:(20.8) Suggested Readings: Shanti

Narayanan, M. D. Raisinghania; Elements of Real Analysis, S. Chand and

Company Pvt. Ltd Ramnagar New Delhi-110055.
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